
1. Data File Structure
1. Welcome Page
2. Skeleton
3. Temp
4. Numbered Directories

1. Thumbnail Files
2. Relative Links

5. Fixing Links
6. Attachments

1. Common Script Environment
7. Tools

1. Scale and Convert Selection to PNG
8. Backup Tools
9. What to Backup?

10. SQLite
1. What is SQLite?
2. SQLite Browser for Windows, Linux and Mac
3. SQLite Firefox Addons
4. sqlite3 Command-Line Tool
5. Reading from PHP
6. Comparing the NULLs

2. Tags
1. System Tags

1. Automatic Localization
2. Volume Indicator
3. Weight & Relevance
4. Filtering the Tree
5. Tag Decks & Deck Sets
6. Mass-Merging

3. Search
1. “Smart” Collections
2. Filter by Path
3. Improving Relevance
4. Query Language

1. Cheatsheet
2. Parsing Libraries

5. Custom Sorting with Weights
6. Custom Sorting with Random
7. Custom Sorting with C# Plugin
8. Randomize as a Marker

4. Thumbnails
1. Editing Thumbnails
2. Many Objects, Same Thumbnail
3. Batch Cropping
4. Permanent Cropping
5. Batch Transformation
6. Text Overlay with Ruby

Stagsi Cookbook / (1/94) 2/11/2024 (5c5cf14)

7. Supported Formats and Plugins
1. Custom Thumbnails – Manual Generation
2. Custom Thumbnails – Via Scripts
3. Custom Thumbnails – C# Plugin

5. Browser Copy
1. Synthesized Paste
2. Merge and Split Databases
3. Confirming Changes (Diff)
4. Multiple Clipboards
5. AutoHotKey
6. Node.js
7. Notepad 2e
8. Spreadsheet

6. Import
1. Duplicates & Hashes

1. Zero-Sized Files and the Null Hash
2. Fuzzy Duplicate Images Detection

2. Explore Skipped
3. Tags by Wildcard
4. Tags by Regular Expression (RegExp)
5. Tags From Custom Sources
6. Multiple File Name Tags
7. Repairing Corrupted
8. Change Data Mode

7. Surprising Uses
1. Audio & Video Bookmarks
2. Web Bookmark Manager
3. Supplimenting Regular Folders
4. Using Windows Shortcuts

1. Another Way To Tag Folders
5. Using Batch and Other Script Files

8. Command-Line
1. Read-Only
2. Multi-Instance Mode
3. SQL Log
4. Data-Path
5. /search
6. /nmh

1. Troubleshooting
2. C Implementation

7. /hash
8. /import
9. /pick

10. Maintenance
1. System Scheduler
2. Partial /rehash

Stagsi Cookbook / (2/94) 2/11/2024 (5c5cf14)

3. Other Partial Commands

9. Settings
1. License Key

10. Other Tips
1. Exporting to Spreadsheet
2. Exporting with Keywords
3. Distributed (Shared) Database
4. Database Compartments
5. Shared Per-User Database
6. Attachments

1. “Has Attachments” Tag
2. Attached Queries
3. Icon Variants

7. Web Database Viewer
8. Performance Tips
9. Portable Builds

10. Using an External (USB) Drive
11. Version Numbers
12. Alternative Software

11. Database From Scratch
1. Freelancer.com
2. Unicode Table

Stagsi Cookbook
This comprehensive document is a hacker’s guide to Stagsi – an Interface to Soletude’s Tagging System.

With Stagsi you and your team can organize data with a hierarchy of tags. While this is not new (see
Alternatives), the openness and flexibility of the data model, QueryLanguage, applicability to any file
format, and durability (fault tolerance and number of managed objects) are distinguishing Stagsi even
from the industry leaders (Adobe Bridge and Apple iTunes).

Stagsi is a commertial product but its Free edition can be used in non-commercial environments with a
few light limitations, and a Professional license costs pennies compared to others and is irrevocable and
non-expiring by design.

Stagsi homepage: go.soletude.ca/stagsi.
Community forum: go.soletude.ca/stagsi/forum.
Contribute your scripts: go.soletude.ca/stagsi/recipe.
Up-to-date online documentation: go.soletude.ca/stagsi/cookbook.
Offline documentation in various formats: go.soletude.ca/stagsi/archive/cook….

Data File Structure
Stagsi is using simple, easily accessible data storage mechanisms. At its core lies Stagsi.sqlite – a
standard SQLite version 3 database which is described in detail in its own section.
Stagsi Cookbook / Data File Structure (3/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi
https://go.soletude.ca/stagsi/forum
https://go.soletude.ca/stagsi/recipe
https://go.soletude.ca/stagsi/cookbook
https://go.soletude.ca/stagsi/archive/cookbook

Other files and folders that may appear:

Temp directory – holds temporary data during import, search and other activities.
Icons directory – holds icons assigned to tags, displayed on top of the objects tagged with them.
First, TagRowId.png is searched; if not found and the tag is system then System.png is also
searched (e.g. _mp3.png).
Attachments directory – holds extra files and folders connected with specific objects.
Sorting directory – holds persistent data used by SortingPlugins.
Tools directory – these files are directly accessible from the main menu. Normally you put useful
scripts here, e.g. to back up the database or clean Temp. See Tools.
Numbered directories – hold imported object thumbnails and data, e.g. images, documents, etc. or
links to them (for objects imported in linked mode).
JSON files – hold program settings and state (window positions, list of tabs, etc.).
Welcome.html – a web page displayed when opening the database in interactive mode (not
with maintenance operations like /rehash). See Welcome.

Subfolders in this, Temp, Attachments and other subdirectories are used to work around certain file
systems (especially FAT) limitations on big number of files that become increasingly slow when a
directory contains more than a few thousand of entries. Stagsi is designed to work with hundreds of
thousands of objects (each object having multiple files).

If you wish to store custom data within a Stagsi database directory, prefix your (root) files and folder
with an underscore: _Docs\License.txt or just _License.txt if it’s directly under the data path.
Such names are guaranteed to never conflict with Stagsi’s own data.

Welcome Page

If the database folder contains Welcome.html file, it’s presented to the user whenever it’s opened in
Stagsi. Because it’s a local file, you can use the file:// scheme and reference resources (and
others) relatively to the database folder. However, interaction with remote resources and <script>
(JavaScript) are subject to standard Internet Explorer and Windows restrictions. Basic formatting with
local images and links (<a>) should always work but remember that Internet Explorer is fairly old and
doesn’t support many modern web standards.

If you’re redistributing your database, you can put a license text here, or information about and links to
your company or team.

You cannot directly launch processes from this page but you can reference executable files like and when the user clicks on such a link he’ll be asked if he wants to
run it. This can be used to open tabs in Stagsi (Stagsi.exe /search "the | query"), run
maintenance tasks (/rethumb), run arbitrary programs (Notepad.exe), etc.

Skeleton

Skeleton appears under Stagsi’s installation directory and holds initialization files for new databases
(done when “opening” an empty directory by copying Skeleton files there). It is used to specify new
database defaults.

Stagsi Cookbook / Data File Structure (4/94) 2/11/2024 (5c5cf14)

If Skeleton\Temp\Bootstrap.bat exists then it’s ran within CommonScriptEnv in the end of
initialization; Stagsi waits until it exits (ignoring its exit code) and proceeds on loading the new database.
To cancel database creation use taskkill /F /PID %pid%.

Example of things you can do thanks to this folder:

Set configuration – e.g. UI Language in Settings.json.
Assign tag icons – usually referenced by the tag’s system name because RowId may not be
known at that time – Icons_Deleted.png.
Send a notification to a web page from Temp\Bootstrap.bat.
Add useful Tools or Plugins.
Check-in the new database into a version-control system such as with git init.
Change tag colors in Stagsi.sqlite – Color field of the Tags table.
Add custom SQLite columns or rows – e.g. DataLicense Key in Stags (displayed in the
database properties in Stagsi).
Add commonly used Tags or group all system tags into one parent to make it less messy using
ParentRowId of the Tags table.

Temp

May include such files, grouped into arbitrary subfolders:

DLL files – compiled search queries. Stagsi keeps number of these under some limit, removing
old searches automatically.

Stagsi is a Net program, and when you perform a search – the search expression is compiled as a
Net assembly stored in Temp for better performance (even when Stagsi is restarted). The search
will still work without write access to Temp (such as in /ro – read-only mode) but even identical
searches will be compiled from scratch which takes a few hundreds of milliseconds.

SQLITE files – old database versions. As you upgrade Stagsi, sometimes it will involve upgrading
the database file. This is an irreversible process (older Stagsi version will no more work with an
upgraded database). Before upgrading, the database is copied to Temp so that the upgrade can be
manually reversed (of course, losing changes done after the upgrade). You shouldn’t see too
many of such files, but in any case are not used by Stagsi and can be safely deleted.
Other files – created during import for holding file data and thumbnails. Normally these are
removed automatically unless something went horribly wrong (Stagsi crashed, the PC halt and
caught fire, aliens invaded Windows, etc.).

If a Stagsi process has created these files, and then exited – these files are never going to be used
again.

If Stagsi is not running, it’s safe to remove this entire folder or any files inside it to reclaim space.

Numbered Directories

Each numbered directory includes one or more groups of files belonging to one particular imported
object (e.g. an image, a video or a document). The directory in which a group is stored is determined by

Stagsi Cookbook / Data File Structure (5/94) 2/11/2024 (5c5cf14)

the object’s RowId.

Note: RowId is unique. Stagsi (or, rather, its SQLite backend) guarantees that once a RowId was
allocated (by importing a new object), it will never be reused, not even if the object is deleted and
another is imported (a gap will be present, where the old object’s RowId is left unused forever within
this database).

Let’s assume that:

RowId of the imported object is 12345
Its format is MP3
Your thumbnail format is PNG
The number of groups per directory is 1000 (the default)

In this case, all files of this group (of this imported object) are stored in the directory named 12 – the
result of rounding down the result of dividing RowId by 1000 (the limit).

Such files may exist for this group:

123.mp3 – the actual file data. Only if this object was imported in non-linked mode (Copy or
Move).
123 – an extensionless file existing for objects imported in linked mode. It’s a regular text file that
can be opened in Windows Notepad or similar program (even though it has no conventional
.txt extension). Its content is the path to the “real” file somewhere else (to which this object is
“linked”) – absolute or relative to the database path (folder with Stagsi.sqlite), possibly with
%environment% variables.
t123.png – full-size thumbnail generated from the object’s file data.
u123.png – user-supplied full-size thumbnail.
c123.png – cropped thumbnail, either from u123.png or, if that doesn’t exist, from
t123.png.

Thumbnail Files

There are 3 possible thumbnail files per each imported object which differ in the prefix (first letter): t, u
and c.

t stands for s"t"andard thumbnail. Stagsi generates this file from the file data for known file formats
(like images). For unknown formats, e.g. for MP3 audio or XLS spreadsheet, this file is not created.

u stands for “u”ser thumbnail. Stagsi doesn’t create or change this file except via the Edit Thumbnail
dialog. It doesn’t exist for objects using standard thumbnails (t).

c stands for “c”ropped thumbnail. This is a smaller version of either t or u. It’s managed by the user via
the Edit Thumbnail dialog. It doesn’t exist for objects using full-size thumbnails (either t or u).

This table summarizes the differences of each prefix:

Prefix Can be manually changed? When
used? Vital for backups?

Stagsi Cookbook / Data File Structure (6/94) 2/11/2024 (5c5cf14)

t No – change u or c instead. If u and c
don’t exist.

No, generated from file
data with /rethumb.

u Yes, when Stagsi is not running.

If both u and c exist, make sure to change both of
them accordingly to avoid discrepancies later.

If c doesn’t
exist. Yes.

c Always, if
exists.

No, generated from c or
u with /rethumb.

Relative Links

By default, when files are imported in Link mode, they reference original files by the absolute path. This
is fine if the database is used on the same system or its location often changes (while location of the
original files doesn’t). However, it’s troublesome if the is being used on different systems (e.g. via a
shared folder or git repository), or original files are often moved.

Let’s imagine you have a folder with books and a Stagsi database which provides a “view” into that
folder (book files are not inside Stagsi but can be searched and opened from there). We need the book
folder and the database to be “portable” – usable from a USB stick on different systems (even without
Stagsi installed), or when shared via Dropbox or GitHub, etc. which is impossible with absolute paths
(the default) since files end up in different locations.

If you are sharing the book files as well as the database, you can place the database in the root folder
with the books and change all link data files from C:\Users\MyBooks\... to ..\ (so that file data
is searched 1 level above Stagsi.sqlite):

_Stagsi\
Bios\
Computers\
Fantasy\
History\
...

If you are sharing the database only and your users have the book files somewhere, you can use what is
called “environment variables”. These are basically arbitrary strings with a predetermined name, set via
Control Panel > System > Advanced settings > Environment Variables. Create one named
STAGSI_BOOKS, set it to C:\Users\MyBooks (and ask other users to do the same) and replace link
data files from C:\Users\MyBooks\... to %STAGSI_BOOKS%\....

Fixing Links

Normal object data is stored in files like 123.gif but if an object was imported in “linked” mode, the
extension is omitted: 123 and the file stores just a plain text absolute path to the “real” object file
(outside of the database directory).

To fix a single link, it’s usually more convenient to simply re-import the file whose link is broken – Stagsi
will detect it as a duplicate and do nothing except fixing the link to point to the new location of that file.

To fix links in a more complex way, these files can be edited by hand (if Stagsi is not running).
For example, if you have moved a folder to which multiple links exist, you can run a Find & Replace on
this directory using an editor like Notepad++. If the old folder’s location was C:\MyDocuments and

Stagsi Cookbook / Data File Structure (7/94) 2/11/2024 (5c5cf14)

new location is F:\My then here is how it can be fixed:

On a big database, this can take longer than desired because we’re matching all files within the
database. To speed it up, we can pre-filter files by wildcards. In Notepad++, setting the Filters input
to the following:

?;??;???;????;?????;??????

…will restrict the search to files which names are exactly 1, 2, 3, 4, 5 or 6 characters long. This still
includes some files with extensions like 12.gif but not more than first 99 RowId’s (if using traditional
3-character long extensions), leading to a significant performance benefit.

In a program that allows exclusion by wildcard (like WinRAR), specifying *.* is better as it skips all files
that have an extension regardless of their name’s length.

If you a scripting guy, a little bit of Perl can make anybody’s life easier. Here’s code that replaces
absolute path references (produced by the import in non-link mode) with relative:

Attachments

Stagsi allows adding extra files and folders per each database object. For example, for a video lesson
you can keep notes in a simple text file. Such extras are placed in separate directories per object within
Attachments using the same numbering convention as the main directory. For example, object with
RowId of 12345 will use Attachments\12\12345\.

Object directory contents are entirely user-dictated and may contain any kind of files and even
subfolders. Stagsi does not track or hash them.

Common Script Environment

When Stagsi starts new processes it typically sets their environment as follows:

Working directory is set to DataPath (current database path).
STAGSI environment variable is set to the path of Stagsi.exe.
PID environment variable is set to Stagsi’s process ID.

chdir q[C:\My\Database];
@files = glob "**";

foreach my $file (@files) {
 if ($file =~ /\\\d+$/) {
 open(my $in, $file) or die $!;
 my $content = <$in>;
 # .\ is superfluous, could be just an empty part.
 $content =~ s/^C:\\My\\Database\\/.\\/;
 open(my $out, '>', $file) or die $!;
 print $out $content;
 }
}

Misc/Unprefix link paths.pl • Skip this example (#exQW) • Browse on GitHub • Adjustments (2)

Stagsi Cookbook / Data File Structure (8/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Misc%252FUnprefix+link+paths.pl

Tools

Many Stagsi-related tasks can be automated with scripts or small programs. The Tools directory and
the corresponding main menu command allow calling them easily from within Stagsi. You can write
your own scripts or find a bunch of helpers created by the community at go.soletude.ca/stagsi/recipe.

If you access a certain tool often, create a hotkey by putting a & before a symbol in its file name,
for example: Clean T&emp.bat – then call it by pressing Alt+T (opens the Tools menu) followed by
Alt+E (Alt + symbol after the &).

Tools’ processes are started within CommonScriptEnv. For files starting with Selection (e.g.
Selection to iTunes.bat) and when Object Browser’s selection is non-empty, an environment
variable named SELECTION is set to a path to a text file containing information about selected
object(s) in the same JSON format as Object Browser’s Copy command. Tools using this file for long (if
another tool may be called before this tool exits) should copy or move this file elsewhere and work on
that copy, otherwise it may change while the tool is running.

Scale and Convert Selection to PNG

Suppose you have a database of icons for mobile apps and, naturally, they are all vectors (SVGs). Stagsi
can display their thumbnails thanks to its plugins but when you want to use such an icon in a program
that doesn’t support SVG you have to convert it into PNG and doing it by hand is tedious.

Below is a PHP script that’s using ImageMagick to convert images selected in Stagsi into PNGs of
certain square dimensions, preserving their transparency and trimming transparent background on the
edges (-trim). Copy/paste it and change $size to create multiple “tools”, each converting to different
dimensions (e.g. 16x16 and 32x32):

Backup Tools

Nobody wants to invest their time managing thousands of items if there is no clear backup strategy
(this is one problem with proprietary software). Stagsi is completely open on how it stores the data
making any conventional tool perfectly adequate for the task.

Read What to Backup? to learn which files you have to store and which can be safely left out.

<?php
$size = 16;
$imagick = "C:\\Program Files\\ImageMagick\\convert.exe";

strtok(file_get_contents(getenv('SELECTION')), '{');
$data = json_decode('{'.strtok(null));

foreach ($data->Objects as $obj) {
 system(escapeshellarg($imagick).
 " -size {$size}x$size -background none -trim".
 ' '.escapeshellarg($obj->FilePath).' '.
 '
'.escapeshellarg(getenv('USERPROFILE').'\\Desktop\\'.$obj->Title."
{$size}x$size.png"));
}

Tools/Selection to &16x16 PNG.php • Skip this example (#exVA) • Browse on GitHub • Adjustments (2)

Stagsi Cookbook / Data File Structure (9/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/recipe
https://go.soletude.ca/stagsi/ex-code/Tools%252FSelection+to+%252616x16+PNG.php

As for the tools, here are some options:

Utility
Class Tools Pros Cons

Archivers WinRAR,
7-Zip, etc.

Fast (literally 1 click if using
WinRAR profiles).

Extremely simple to use.

Encryption and corruption
protection (WinRAR) out of
the box.

Subsequent backups are as large as the entire
database which is a big problem for frequent
backups.

Version
Control
Systems

SVN, git,
Mercurial,
etc.

Drastically reduced storage
requirements.

Some are distributed (can be
used as a “shared folder”).

Steeper learning curve.

Slow commits with tens of thousands of files.

Incremental implies slow restoration and larger
impact of a history corruption.

Cloud

ownCloud,
Dropbox,
G.Drive,
AWS, etc.

Effortless and simple to use.

Distributed and (reputedly)
reliable.

May be paid.

May be third party.

Not versioned – can’t revert to an “earlier
version” if your folder was synced after
corruption.

Backups

dar,
tarsnap,
Acronis
True
Image,
VSS, etc.

Pros and cons are very specific to a particular product. For instance, cross-
platform open-source dar allows incremental backups with encryption, volume
support, scripting, etc. but it aimed at power users. Acronis True Image is the
opposite, more like a “backup cloud” for home users.

What to Backup?

With Stagsi, you don’t need to back up the entire data directory because some data can be
reconstructed from another. However, omitting wrong files may lead to small but unrecoverable
database.

Short and safe answer: use a tool like WinRAR or git that supports excluding files by wildcards and
specify these:

Temp/*
/t.*
/c.*

In other words, omit the Temp directory (DataTemp) and files in the numbered folders starting with t
or c. After extracting a backup made this way, run the /rethumb command and you are ready to go.
Stagsi Cookbook / Data File Structure (10/94) 2/11/2024 (5c5cf14)

With WinRAR, you can make backups significantly faster if you add the following to the list of files
added without compression (since they’re already compressed by nature):

*.gif *.png *.jpg

WinRAR also supports storing settings under profiles – prepare it once and back up with a single click.

Long answer: the following files are of interest, in order of importance:

Stagsi.sqlite – the most critical file. If it’s missing, nothing at all can be salvaged but even if
you have this file only, you can recover your tag hierarchy, list of imported objects and their tags,
locations, hashes and other metadata. No thumbnails and object data will be available but if you
manually replace those, you can fully restore the database.
Settings.json – holds the configuration of this database. It’s important but, if missing, it can
be rewritten by hand with some effort. Best to keep.
In numbered folders, files with numeric base name, e.g. 123.gif or 123. These are data and link
files. If missing, commands like Open and Export won’t work (because there’s no file to open or
export), and commands like /rethumb, /rehash and /check will fail. Best to keep.

Obviously, if you have linked objects – you should ensure their targets are backed up too.
For example, if you back up the 123 file but not the C:\My\Picture.jpg file – you’ll store the
link to this file (which is good) but no actual file, so to recover the backup you’ll have to find that
Picture.jpg elsewhere.

In numbered folders, files with names starting with u, e.g. u123.png. These are user-assigned
thumbnails. If missing, Stagsi will use its own thumbnail (t123.png) or no (for unknown formats
like PDFs). Best to keep.
Attachments directory – extra files and folders like notes and bookmarks that you’ve created
with attachment object menu commands. They’re not used at all by the database but if they’re
important to you, then keep this directory.
Tools directory – helper scripts and programs for calling from within Stagsi. If you’re using them
then you should keep this.
Icons directory – holds tag icons. If missing, tags will lose all icons but this is hardly critical. Still,
better to keep.
Other *.json files – hold state of the program, like filled tag decks, sort modes, etc. Not very
important, you’ll start off with a blank (default) interface if missing, so it’s up to you.

And the following files are not important:

In numbered folders, files with names starting with t or c, e.g. t123.png. These are
automatically generated full-size and cropped thumbnails. They can be fully regenerated with
/rethumb provided other data is safe.
Temp directory – can be entirely omitted. Nothing needs to be done if it’s missing. See DataTemp.
Sorting directory – if cleared partially or fully, will be regenerated upon next search sorted by
the corresponding SortingPlugins.

SQLite
Stagsi Cookbook / Data File Structure (11/94) 2/11/2024 (5c5cf14)

What is SQLite?

SQLite is a database engine used by world-popular projects like Firefox and Android. Stagsi is using
SQLite version 3 as a backend for storing metadata (image properties, tag hierarchy, etc.). Advanced
users can manipulate this database directly using the standard tools.

SQLite Browser for Windows, Linux and Mac

Homepage: sqlitebrowser.org.

This is a free, easy to use program for all popular operating systems.

Let’s imagine you have a large number of objects with a typo in the title: “gmae” instead of “game”. You
can fix this by issuing this SQL query (note that it’s case-sensitive – “Gmae” isn’t affected):

UPDATE Objects SET Title = Replace(Title, "gmae", "game")

Or suppose you want to wrap titles of all tags’ of some parent into brackets. For this, first determine the
parent tag’s RowId by hovering over it in Stagsi’s tag dialog, then utilize the SQL’s concatenation
operator (||):

UPDATE Tags SET Title = '[' || Title || ']' WHERE ParentRowId = 12

SQLite Firefox Addons

If you have Firefox installed, then you can avoid installing any other software for simple SQLite tasks.

Usage is similar to SQLite Browser. For example, you can multiply the Weight of all objects’ tags’ by 10
with this SQL query:

UPDATE ObjectTags SET Weight = Weight * 10

sqlite3 Command-Line Tool

The SQLite project provides a cross-platform console tool for running queries on SQLite databases. It’s
great for use in shell scripts.

Here’s a query that returns a comma-separated list of RowId’s of objects that are over 10 MiB in size:

SELECT GROUP_CONCAT(RowId) FROM Objects WHERE FileSize > 10485760

Reading from PHP

If you are a programmer, you can automate many tasks with PHP (or similar languages). PHP comes
with built-in support of SQLite 3 via PDO.

Stagsi Cookbook / Data File Structure (12/94) 2/11/2024 (5c5cf14)

https://sqlitebrowser.org

Here is a script to update hashes of the specific objects only (handles linked files; doesn’t handle large
files due to a different hashing mechanism):

Comparing the NULLs

Most people unfamiliar with SQL make a common mistake of assuming that WHERE Column =
NULL will match if Column is NULL. However, in SQL nothing matches a NULL, not even another
NULL so WHERE NULL = NULL will never match. Instead, for comparing with NULL use the IS
operator: WHERE Column IS NULL or Column IS NOT NULL (not <>).

For example, to convert names of all your tags to lower case except for system tags like Last
Imported:

UPDATE Tags SET Title = LOWER(Title) WHERE System IS NOT NULL

Note: LOWER() only works with Latin symbols and will corrupt strings containing other characters.

Tags
System Tags

System tags are special kind of tags maintained by Stagsi. Unlike normal tags, they:

Cannot be created or deleted.
Cannot be assigned/removed to/from objects.
Cannot have their Weight changed (it’s always 0).

<?php
$stagsiDataPath = "C:/My/db";
$db = new PDO("sqlite:$stagsiDataPath/Stagsi.sqlite");
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$getStmt = $db->prepare("SELECT * FROM Objects WHERE RowId IN (1, 2,
3)");
$getStmt->execute();
$rows = $getStmt->fetchAll(PDO::FETCH_OBJ);

$setStmt = $db->prepare("UPDATE Objects SET Hash = ? WHERE RowId =
?");

foreach ($rows as $row) {
 $base = "$stagsiDataPath/".floor($row->RowId / 1000)."/$row-
>RowId";
 $file = is_file($base) ? file_get_contents($base) : "$base.$row-
>Format";

 $setStmt->bindValue(1, md5_file($file));
 $setStmt->bindValue(2, $row->RowId);
 $setStmt->execute();
}

Database/rehash simple.php • Skip this example (#exJV) • Browse on GitHub • Adjustments (3)

Stagsi Cookbook / Tags (13/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Database%252Frehash+simple.php

However, just like normal tags, they:

Can have their title, color, order, parent, icon changed.
Can be searched for (be part of a search expression).

The following system tags exist:

Untagged – appears on objects which have no normal tags (added by user).
Corrupted – appears on objects which have failed integrity (hash) check. This means their data
on disk is different from what it was when the object was imported. For linked objects, this might
mean that the object was moved away from its target location.
Format tags like GIF and MP3 – appear on objects of this format, e.g. MP3 audio tracks.
Imported – when Stagsi imports tags from metadata (created by Windows Explorer, Adobe
Bridge or other tools), it creates them under this system tag. Objects don’t have this tag.
Animated – appears on objects which can be played within the Stagsi itself (normally by
hovering). Stagsi understands very few formats (most notably – animated GIFs); absence of this
tag doesn’t mean the object is not playable in an external media player.
Last imported – appears on objects added (or skipped due to duplicates) during the most
recent import session.
Deleted – appears on objects in the “recycle bin”, i.e. hidden from regular searches but still able
to be recovered (by searching for this tag explicitly).

Because such objects are hidden by default you can use it as a “blacklist” for files that should be
ignored on import – e.g. if you have “loosely” duplicate files (e.g. different only in meta-data or a
few pixels) in various places that you have once identified and do not want them to clutter your
database anymore. Another way would be to create a separate tag like “Blacklisted” and always
launch Stagsi as Stagsi.exe /pick /force -Blacklisted (see pick) but then you
won’t be able to browse such objects even by searching for this tag explicitly.

Custom thumbnail – appears on objects with user-assigned thumbnails (the u file prefix). It’s
useful if you have imported a bunch of formats that Stagsi cannot generate thumbnails for and
started to gradually add thumbnails by hand. Searching for -"Custom thumbnail" lets you
resume with objects yet missing a thumbnail.

Automatic Localization

Actual titles for system tags having blank Title in the database are taken from the current
localization – this way you and that guy in Russia see the Deleted tag differently even if sharing the
same database. However, because the localized title is used in the search, queries now become
localization-specific and on your system Удалённые will give an error.

If this is a problem for you – give system tag(s) an explicit name (even if it matches your localization
exactly, e.g. “Deleted”). Title will stop being an empty string and Stagsi will treat it literally.

Volume Indicator

In most cases, when a tag’s name is displayed it will be accompanied by a “volume indicator” – a small
vertical “progress bar” indicating how many objects in a database are tagged with this tag using a

Stagsi Cookbook / Tags (14/94) 2/11/2024 (5c5cf14)

logarithmic scale.

For example, if your database has 20 objects in total and 5 of them are tagged with tag A, then A’s
volume is log10(5+1) / log10(20+1) = 58.8%.

Weight & Relevance

An object has not just tags but also relevance of that tag to this particular object – its “weight”.

Imagine you have 2 images: a portrait of someone and a room with a hanging portrait on the wall. In
the first case, the “portrait” tag is much stronger, more relevant to the description of the image than in
the second, where it’s a mere detail, not the main theme.

Yet in most traditional tagging systems, you get a binary “have tag”/"have no tag" relationships and you
have to skip describing small details or use different tags for them (e.g. “portrait_image” and
“hanging_portrait”) to avoid polluting the search with irrelevant results. Or (as in Adobe Bridge) you get
a 5-star rating system but it’s global and doesn’t tell us if the picture is “generally great” (5 stars) or the
“portrait frame is excellent” (same 5 stars).

In Stagsi, you can still use one tag for both images, but assign +1 weight to the first (a portrait) and 0 to
the second (a handing picture). And the equivalent of “generally great” (a generic rating) is just a weight
of some specific tag, like “greatness”.

Weights:

Can be arbitrarily large (up to some sane limit like 2147483648), as well as negative.
Have 0 as the default value.
Affect only sorting of the results. No matter the weight, if a tag is assigned to an object and that
tag is listed in the search expression – the object will always appear in the results. If its relevance
(combined weights) is very low, it may go last, but it will appear nevertheless.
Relevance sorting is enabled by default and works like this: for each matched object, take all tags
that are mentioned in the search expression (except -negative), sum up their weights and use
that number to compare with other objects (object with higher weight goes first).

Using our portrait example, given images A (portrait weight +1) and B (portrait weight 0)
and search query of portrait, A is put first because its relevance (sum of weights) is 1 while B’s
relevance is 0.

Filtering the Tree

If you have over a hundred of tags you will find that the Quick filter input is the most convenient way to
browse your tag hierarchy. Here are some helpful tips regarding both the tags’ and saved searches’
trees:

When you first filter the tree Stagsi remembers previously expanded nodes. When the filter is
cleared, the state of before the first filter is restored (expanded nodes are made expanded,
collapsed nodes are made collapsed). In addition, selected nodes are always expanded (see
below).
Filter changes do not affect the checkboxes – even if a node becomes hidden it still remains
checked. If you need to check a number of disparate tags – filter the tree several times, each time

Stagsi Cookbook / Tags (15/94) 2/11/2024 (5c5cf14)

checking new nodes to add them to the selection (even though some of the previously checked
nodes would not be visible).
After a filter change, newly hidden nodes are un-selected if they were previously selected. If any
node remains selected then after the filter is applied (nodes hidden or shown) the tree expands
selected node(s) and scrolls to the first selected node.

Use this to display a tag within its context: filter a tree, select your tag(s) and clear the filter to
reveal its siblings and other tags.

Tag Decks & Deck Sets

One unique feature of Stagsi (among many others) is a large array of tagging hotkeys – over 2 dozens.

Hotkeys are bound to tag slots, which can be of two kinds: global and deck-specific. Each slot may be
assigned one or more tags that are applied to objects in the current selection or under the mouse
cursor (if you’ve enabled this option).

First, you have 5 global tag slots that respond to Q W E R T keys (without modifiers). Using
Shift modifier would toggle tags instead of adding only. Another 5 history slots (Y U I O
P) are like global but get automatically filled as you pick tags elsewhere.

Second, you have 10 deck-specific tag slots that respond to numeric keys (1 2 3 … 0), again
without modifiers or with Shift .

Then you have 10 decks that are switched with Alt+numeric_key . So you have about 100 tag slots
(each with multiple tags!) that are reachable by at most 2 keystrokes (switch deck, then apply tags).

Finally, if that was not enough, you can switch decks themselves by means of a button with a menu (no
hotkey this time). The menu allows you to create as many tag decks (organized into deck sets) as you
wish. So, with 2 clicks and 2 keystrokes at most you can reach pretty much every set of tags imaginable.

Now, a practical example.

Global slots are independent of decks, and they’re also few. Fill them with very common, generic tags
that you’ll likely have, such as: “tag_me” (for revisiting this object’s tag list later), “may be junk” (stuff
that could be deleted), “irrelevant” (secondary images that are details of some others, to avoid cluttering
search results), “ecclesia project” (what you’re currently busy with), etc.

History slots are great for rarely used tags. First you manually pick some via the dialog, then they get
assigned to these slots and you can recall them quickly, until they’re “shifted away” by more recent
selections.

Deck-specific slots are to be filled with thematic tags. For example, if you’re a game designer and you
are tagging animation references, then the 10 available slots may be filled with animation kinds, such
as: idle, walk, run, attack, jump, looped, etc.

Once done with animations, you can switch to another deck used for describing pictured objects: cat,
man, technology, furniture, nature, etc.

If your database is used for more than one kind of objects – for example, also video tutorials or phrase
collection for writing stories, then you’ll quickly grow out of 10 decks by 10 slots and start using a
specific deck set for a specific kind of workflow.
Stagsi Cookbook / Tags (16/94) 2/11/2024 (5c5cf14)

Mass-Merging

Imagine you have done several imports with tags extracted from file names, using a regexp so that
ic_personal_video_black_36dp.png (a typical Android resource file name) got tags
personal and video. However, with one of the imports you put tags under a different parent
(perhaps straight into the root), as a result getting two tags: personal in the root and personal
under Tags – and now you need to remove the duplicates.

This is usually solved by using Merge Into (This) commands but if you have several thousands of such
tags cleaning them up by hand would be ridiculous. Worry not – you can do that in one go if you work
directly on the database (with care!) since merging is basically changing the TagRowId field’s value of
the ObjectTags table from the old (to-be-merged) tag to the new (combined/recipient) tag. Here’s a
PHP script doing that:

To use it:

First, move all potentially duplicate (to-be-merged) tags to under the same parent – but before

<?php
set_error_handler(function ($severity, $msg, $file, $line) {
 throw new ErrorException($msg, 0, $severity, $file, $line);
}, -1);

$rootTagRowId = 1234;

$db = new PDO("sqlite:C:/Stagsi DB/Stagsi.sqlite");
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$updateStmt = $db->prepare("UPDATE ObjectTags SET TagRowId = ? WHERE
TagRowId = ?");

$tags = $db->query("SELECT RowId, * FROM Tags WHERE ParentRowId =
$rootTagRowId")
 ->fetchAll(PDO::FETCH_OBJ);

$dupTags = [];

foreach ($tags as $tag) {
 $title = preg_replace('/^:+/u', '', $tag->Title);
 $ref = &$dupTags[mb_strtolower($title, 'utf-8')];
 $ref[] = $tag;
}

foreach ($dupTags as $tags) {
 if (count($tags) > 1) {
 $main = $tags[0];

 foreach ($tags as $tag) {
 if ($tag !== $main) {
 echo "merge $tag->RowId into $main->RowId", PHP_EOL;
 $updateStmt->bindValue(1, $main->RowId);
 $updateStmt->bindValue(2, $tag->RowId);
 $updateStmt->execute();
 }
 }
 }
}

Database/Mass merge.php • Skip this example (#exQU) • Browse on GitHub • Adjustments (3)

Stagsi Cookbook / Tags (17/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Database%252FMass+merge.php

that prefix all such tags with a unique symbol like : to avoid Title conflicts:

UPDATE Tags SET TItle = ':' || Title WHERE ParentRowId = 1234

Next, change $rootTagRowId in the script to the RowId of the parent tag containing all to-be-
merged tags.
Run the script. It will consider tags with zero or more : in the Title to be the “same” (e.g.
::SomeTag) and merge them into one tag (this tag may happen to be with :s or without).
Now tags are merged but old, duplicate tags remain as having no assigned objects. Open Stagsi,
sort the tree by object count and delete them.
Finally, remove : prefixes of the remaining tags (you may need to run the query multiple times if
some tags have multiple :’s):

UPDATE Tags SET Title = SUBSTR(Title, 2) WHERE SUBSTR(Title, 1,
1) = ':' AND ParentRowId = 1234

Search
“Smart” Collections

Some programs (like Adobe Bridge and Apple iTunes) have two kinds of collections: “regular” and
“smart”. The first do not automatically refresh when keywords are updated while the second do.

Stagsi doesn’t have “collections” per se. The closest analogy of “smart” ones is saved searches:
whenever you repeat a search (saved or not – saving is just a faster way to enter the search expression)
only actual image tags are checked, so searches are never out of date.

“Regular” collections in Stagsi are a special case of “smart” – create a tag like “My Collection 01” and
assign it to the images of interest, then search for this tag alone.

Filter by Path

One common question of new Stagsi users is: how to find images that once were on some file system
path?

Short answer: not possible.

Long answer: paths are remnants of the traditional file & folder hierarchy mindset. If you’re trying
Stagsi, it means you are not satisfied with that, and for a good reason. Stagsi doesn’t work with paths.

Now, of course there is an “indirect” way. What are file paths and names? They’re the kind of tags, if you
think about it. Your birthday photos may be in C:\Users\Eric\Junk\2018party – and the last
part, “2018party”, is what identifies the collection. And you want to filter based on that – just as if it were
a tag. So the real question is: can you convert path components into tags?

And yes, that is possible. The Import dialog offers tagging by wildcard and tagging by regular
expressions (regexps). For example, *\2018party* wildcard and \\2018party\\ regexp can

Stagsi Cookbook / Search (18/94) 2/11/2024 (5c5cf14)

both solve the birthday problem. Read those sections for more details.

Improving Relevance

Some users may find that highly relevant objects are lost within many not that relevant results. Some
tips that may help:

Create more tags and search for more specific tags. For example, if you have 1000 images of
animals and you want only cats, create a “cat” tag under “animal” instead of putting everything
into “animal”, and search for “cat”, not “animal”.
Utilize tag Weight. For example, picture of a smartphone in large is more relevant to
“smartphone” query than a picture of a person with a smartphone, which is in turn more relevant
than a photo of a hi-tech store show-casing a phone among other various devices. By assigning
the first picture the weight of 3, the second 2, the third 1 you can make them appear in this order
as long as your search query includes “smartphone” tag.
Mark variations of the same image with some tag and exclude it in your searches. For example,
burst photos can be all tagged with “minor” except one of them (or, in contrast, with “primary” tag
for only one). Going further, you can create various tags for various groups of images, e.g. “Other
party 2019-04 photos” and tag images with both “minor” and that tag. This way, locating
variations is easier than with just one “minor” (or “primary”) tag.
Use tags and/or the Random column trick to put more relevant results before others.

Query Language

A good deal of the Stagsi’s versatility comes from its search query language. It’s not complex, and by
mastering it you will master Stagsi itself.

In the following explanation we are assuming this tag hierarchy:

+ people
 + male
 + elderly
 + female
+ nature
 + animals
 + cat
 + bird
 + landscape
 + winter

A search query consists of atoms – tags references. They can be in short and long forms. For the cat
tag, the short form is just that – “cat”, and the long form is: “nature/animals/cat”, i.e. the combination of
all parents’ titles.

The short form can be used if the tag’s own title is unique within the entire database. If we had another
cat tag (under another parent tag) – we could not use this form, otherwise there would be no telling
which of the cat tags we wanted to search for. But if another cat had no parents (was in the root),
then writing just “cat” would refer to that root cat (since “cat” is both its short and long forms).

When you put two atoms – tags – next to each other (separating with a space), you are searching for
both of them. To locate all images of cats on a winter landscape you do: “cat winter”.
Stagsi Cookbook / Search (19/94) 2/11/2024 (5c5cf14)

If you separate the tags with a pipe symbol rather than a space, you are searching for either of them. To
locate images for all people, you can do: “male | female”.

However, there’s a better way. If you prefix a tag with a tilde, you look for that tag as well as any of its
child tags at once: “~people”. This is just a shorter form of writing “people | male | elderly | female”. As
you’d guess, to locate all animals you’d do “~animals” rather than enumerating every type of animal by
hand. This works on any depth so that “~nature” includes all animal’s as well as landscape and
winter.

Prefixing a tag with a dash “blacklists” it – objects with this tag are omitted from the results, even if they
have some other tags that match the query. To look for non-winter cats you do: “cat -winter”, and to
look for all non-winter animals you do: “~animals -winter”. You can even blacklist tags that are matched
by the tilde: “people -elderly” gives you all people (male and female) who are not also elderly.

Prefixes can be combined. To look for all landscapes without any animals you do: “landscape -~animal”.

But wait, there’s more. You can group tags with brackets. If you want all landscapes without animals,
unless they are a winter landscape – you do: “landscape (winter | -~animal)”. This reads as: “take an
image if it has landscape and either has winter or has no animal tag or one of its sub-tags” – i.e.
“either (landscape and winter) or (landscape and no animal and no animal sub-tag)”.

Finally, in the same situation you could use a tag, you can refer to a particular object using its RowId –
just prefix it with /. This form is indispensible if you have pre-filtered objects (e.g. an external search
tool using SQLite) and you only need to display them.

Other notes:

You can’t apply prefixes to brackets.
You can give tag names in any character case – ANIMAL, Animal, animal are all referring to the
same tag.
If a tag name contains special symbols (like spaces and pipes) then you have to quote it: "The
Matrix". This equally applies to long forms: "Top Movies"/"The Matrix".
In your own program you can “extend” the standard syntax by creating terms of at least 2 titles,
first of which is blank and second is non-numeric, for example: /123/tagid or
/tags/added-recently.

Cheatsheet

short_form
long/form
"remember/to quote"
"long/form"/quoted
us all three
either | of | us
~me_and_children
-blacklist
-~not_me_or_children
me_plus (either | -us)
and (/123 | /456) "id"/s

Parsing Libraries
Stagsi Cookbook / Search (20/94) 2/11/2024 (5c5cf14)

The repository with samples contains a very precise AST parser of Stagsi’s query syntax in multiple
languages, including PHP, JavaScript, C# and plain C. Feel free to use it in your projects (public domain
CC0 license).

If you plan on extending the query language with your own syntax, consider avoiding potential clashes
in the future with the standard syntax by making sure your terms start with a blank title and have either
3 or more titles or 2 titles, of which first is non-numeric (doesn’t consist entirely of 0-9 symbols).

For example, if you want to allow referring to tags by their RowId, it’s safe to use /tag/123 or
/123/tag tag but not /123 or tag/123.

Custom Sorting with Weights

Let us remember that tags may be also used for sorting, not just searching. The technique below allows
practically unlimited “sorting profiles”.

For example, you want images to be sorted by brightness or another aspect that is not exactly a
“material tag” like “flower” or “sun” (even though brightness can be explained as “very bright”, “a bit not
too bright”, etc. – using numeric qualifiers is much more intuitive). For this, create a tag – “brightness”,
and add it to all images but with a different Weight. This doesn’t make images immediately sorted – you
need to add “brightness” to your search query and make sure the relevance sorting is enabled (it is by
default).

Custom Sorting with Random

Let’s imagine you have a bunch of week day-themed objects and you want to see ones that correspond
to the today’s date first. It may sound bizarre (call it “flexible thinking”), but most script-friendly way to
achieve this is with the Random column.

How does Stagsi produce random sorting? It’s simple: every object in the database gets a random
number when imported (and when Randomize or /rerand commands are used) which is used to
compare it with others. Bigger Random – later sorting (when in ascending mode).

Nothing prevents us from hijacking this field and using for our purpose, temporary or not, for all
database objects or only some. Another advantage is that we can “undo” our sorting by simple
randomization.

Note: it’s recommended to keep Random within this range: -2147483647 to 2147483647.

In this example, we’re assuming you have a tag named “Weekdays” which has 7 child tags, each starting
with a digit where 0 signifies Sunday (the British, rejoice) and 6 signifies Saturday. Let’s throw in some
Powershell and SQL (using sqlite3.exe from sqlite.org):

$db = "F:\Stagsi\DB\Stagsi.sqlite"
$day = (Get-Date).DayOfWeek.Value__
First, reset order of all objects.
sqlite3 "$db" "UPDATE Objects SET Random = 0 WHERE RowId IN (
 SELECT o.RowId
 FROM Objects o
 JOIN ObjectTags ot
 ON ot.ObjectRowId = o.RowId
 WHERE ot.TagRowId IN (

Misc/Sort by weekday.ps1 • Skip this example (#exCQ) • Browse on GitHub • Adjustments (1)

Stagsi Cookbook / Search (21/94) 2/11/2024 (5c5cf14)

http://sqlite.org
https://go.soletude.ca/stagsi/ex-code/Misc%252FSort+by+weekday.ps1

Custom Sorting with C# Plugin

Since Stagsi version 1802, IPluginService exposes a new method (see Plugins for general
information):

void RegisterImageSorterV1(Func<List<IImageSortingV1>,
List<IImageSortingV1>> Sorter, ImageSorterV1)

Plugin-based sorting works in two phases: generation (once per each object in the database, potentially
a lengthy process) and sorting (once per search, quick). Generator returns arbitrary data that is saved in
the database under Sorting\Plugin.Class.Name\Group\RowID (Group = RowId divided by
FolderSize). Sorting receives that data and may use it to reorder user’s search results.

IImageSorterV1 fields:

Title – language-neutral string visible to the user to identify the sorting mode.
Generator – an Action<IImageSortingV1> providing the data for subsequent sorting.
Can be null if plugin needs no persistent data.
ParallelGeneration – true by default, allowing Stagsi to call Generator simultaneously
from multiple threads.

IImageSortingV1 describes each search result and has these fields:

FilePath – absolute path to the object’s data file.
RowId – the object’s database ID.
Thumbnail – a BitmapSource of the full-size thumbnail (from t123.jpg). Filled only if
Sorter is being called and the object has an associated thumbnail.
Generated – if Generator is being called: initally null, may be set to a Stream to be
persisted; if Sorter is being called: the data previously returned by Generator (null if
returned nothing or if Generator was null).

 SELECT RowId
 FROM Tags
 WHERE ParentRowId = (SELECT RowId FROM Tags WHERE Title =
'Weekdays')
)
)"
Then, bump objects with the matching weekday.
sqlite3 "$db" "UPDATE Objects SET Random = -100 WHERE RowId IN (
 SELECT o.RowId
 FROM Objects o
 JOIN ObjectTags ot
 ON ot.ObjectRowId = o.RowId
 WHERE ot.TagRowId IN (
 SELECT RowId
 FROM Tags
 WHERE ParentRowId = (SELECT RowId FROM Tags WHERE Title =
'Weekdays')
 AND Title LIKE '$day%'
)
)"

Stagsi Cookbook / Search (22/94) 2/11/2024 (5c5cf14)

Sorter may modify the List<> it receives and may return the same object or a new one. If it deletes
some members, they’re re-added to the end (ordered by RowId). If it adds new members, they’re
ignored.

Randomize as a Marker

Even though the Random column may be signed, Stagsi itself only generates positive numbers when
commands like Randomize and /rerand are used. This fact can be utilized to implement a “have seen”
or another similar “yes/no” marker:

At the beginning, reset the “marker” of all objects to “no” by executing UPDATE Objects set
Random = -1.
Open Stagsi, browse as usual, “marking” selected objects by calling Randomize from the context
menu.
Once done, examine “marked” objects by fetching their RowId’s (SELECT RowId FROM
Objects WHERE Random > 0) and then searching for them in Stagsi:

Paste RowId’s returned by the SELECT query into a new Notepad 2e window
Use Modify Lines (Alt+M) to prefix them with /
Call Join Lines (Ctrl+J)
Copy the produced Stagsi query string with Alt+C
Paste to Stagsi’s query input to browse the “marked” objects

With this approach you cannot directly search for “marked” objects from within Stagsi but at least you
don’t have to close it to retrieve marked object RowId’s.

Thumbnails
Editing Thumbnails

Stagsi can generate thumbnails for only a handful of formats, mostly image-based (but you can write
your own plugins). For others, none are generated and a placeholder image is used in the browser.

However, you can manually add thumbnails – and the dialog for doing so has numerous optimizations
to make the task easy:

The F3 hotkey is your friend.
If the dialog is invoked for multiple objects (in the selection), the resulting thumbnail is copied to
all of them. Any object with Custom Thumbnail tag is used as a basis or, in lack of one, any at all
with a thumbnail.
If you have a folder of thumbnails, split-screen Stagsi and Windows Explorer and drag & drop files
from the latter to the dialog.
As an alternative to drag & drop, Ctrl+C (in Explorer) and Ctrl+V (in Stagsi’s dialog) can be
used.
Screenshots can be pasted the same way (Ctrl+V). For example, use PrintScreen or
Alt+PrintScreen to “shot” a window (like a video player), Ctrl+V to paste and then crop
the picture to better represent the content.

Stagsi Cookbook / Thumbnails (23/94) 2/11/2024 (5c5cf14)

Advanced image processing can be performed after initial pasting/cropping using the same F3
hotkey (with the dialog opened). For example, Fast Stone Image Viewer is a powerful hotkey-
friendly freeware tool that allows quickly modify (adjust levels, rotate, apply effects, etc.) and
annotate graphics. Once saved in the external editor, the image is refreshed in the dialog (so keep
it open or restart Stagsi).

Many Objects, Same Thumbnail

If you have imported 24 videos (of a single TV series) and Stagsi cannot generate thumbnails for this
format, you end up with no thumbnails. But you want all these videos to have the same thumbnail. One
option is to repeatedly set the same thumbnail via the Edit Thumbnail dialog. Another option is to paste
user thumbnails directly into the data directory using a 3rd party batch renaming tool (ReNamer used
here):

Select all video objects in Stagsi.
Copy their IDs using the Object Properties panel on the right.
Close Stagsi.
Prepare a thumbnail image file. Ensure its format matches your configured ThumbFormat.
Copy the thumbnail file 24 times (simply holding Ctrl+V in Windows Explorer).
Open the renaming tool, select those 24 thumbnail files and rename them according to the ID
string copied earlier (in ReNamer the rule is called User Input) while also adding the u prefix to
each line (which can be done manually or by adding a second rule called Insert).
Finally, cut those thumbnails and paste into the correct numbered directory (or directories) within
the data directory.

Power users may go further and utilize NTFS hardlinks to avoid wasting space for each copy as well as
propagating changes done to one thumbnail to another. There is a convenient Windows Explorer shell
extension schinagl.priv.at/nt/hardlinkshellext… that allows working with hard- and soft-links (symbolic
links) like with regular shortcut files (.lnk), supporting drag & drop and other commands.

Another option suitable for scripting is the built-in fsutil command:

fsutil hardlink create C:\new.txt C:\existing.txt

The above command can be used in a script with a loop, or we can use Notepad 2e:

Copy object IDs and close Stagsi as in the previous example.
Paste IDs into a blank Notepad 2e window.
Do Modify Lines (Alt+M) with the prefix text of fsutil hardlink create
C:\...\Database\1\u and the append text of .png C:\thumbnail.png (adjusted to
your needs). As a result, you will get a series of executable commands, one per each object:

fsutil hardlink create C:\...\Database\1\u123.png
C:\thumbnail.png
fsutil hardlink create C:\...\Database\1\u124.png
C:\thumbnail.png
...

Stagsi Cookbook / Thumbnails (24/94) 2/11/2024 (5c5cf14)

http://schinagl.priv.at/nt/hardlinkshellext/hardlinkshellext.html

Save them as a .bat file somewhere and run by double clicking in Windows Explorer or using
the Launch command (Ctrl+L).
The .bat file and the original thumbnail (C:\thumbnail.png) are no more needed and can be
deleted.

Batch Cropping

Stagsi stores crop state in the database as 4 floating-point numbers – relative distance from the top-left
corner. For example, cropped top-right corner of the image has this state:

ThumbCropX = 0.5
ThumbCropY = 0.0
ThumbCropWidth = 0.5
ThumbCropHeight = 0.5

Let’s suppose you have a large number of portraits of standing people. Because of too different aspect
ratio, they might not be convenient to browse at small zoom (with small thumbnails). You can batch-
crop all such thumbnails to only display the top third’s horizontal center, i.e. X = 0.25, Y = 0, Width =
0.5, Height = 0.33.

We will set these crop settings using SQL (SQLite), but we also need to tell Stagsi that our objects need
cropping – this is determined by the existence of c files. If all of your objects of interested already have
cropped thumbnails, then some steps can be skipped, otherwise their stub files will need to be created.

Copy object IDs and close Stagsi as in the previous example.
Paste IDs into a blank Notepad 2e window and then into the second blank window.
Switch to one of the windows. Do Modify Lines (Alt+M) with the prefix text of , and do Join
Lines (Ctrl+J). Delete the unnecessary comma in the beginning.
You now have a comma-separated list of RowId’s.
Compose the SQL query of this form, putting the ID list inside the brackets (line breaks can be
added anywhere for convenience):

UPDATE Objects
 SET ThumbCropX = 0.25, ThumbCropY = 0.0,
 ThumbCropWidth = 0.5, ThumbCropHeight = 0.33
 WHERE RowId IN (...)

Save the SQL query to some file and copy its path (e.g. using Notepad 2e’s Run window –
Ctrl+R , then Ctrl+C to copy).
Run that SQL on the database. Here’s how to do it with the official console sqlite3 tool (but any
other can be used):

sqlite3.exe "C:\...\Database\Stagsi.sqlite" <query.txt

Stagsi Cookbook / Thumbnails (25/94) 2/11/2024 (5c5cf14)

Create crop stub files:
Switch to the second Notepad 2e window with the list of IDs.
Use Modify Lines (Alt+M) with the prefix text of echo >C:\...\Database\1\c and
the append text of .png. Replace the corresponding parts accordingly. As a result, you will
get a series of executable commands, one per each object:

echo >C:\...\Database\1\c123.png
echo >C:\...\Database\1\c124.png
...

Save it as a .bat file somewhere and run by double clicking in Windows Explorer or using
the Launch command (Ctrl+L).

The query file and the .bat file are no more needed and can be deleted.
Run /rethumb to regenerate the cropped versions according to our changes.

Permanent Cropping

If you’re making a database of computer programs (or games) then you might be assigning
screenshots (made with PrintScreen) to each object (a program or a game) and cropping them
using Edit Thumbnail dialog. This works but full-size screenshots remain on disk as u-files (see
ThumbU).

If you don’t plan on ever changing the crop region, you can free up the space by making the cropped
version permanent (i.e. “full-size”) by:

Renaming c thumb files into u (if u exists then overwriting it).
Setting these fields in the Objects table to 0.0:

ThumbCropX
ThumbCropY
ThumbCropWidth
ThumbCropHeight

Here is a helper PHP script:

<?php
$rowidsFile = 'c:/rowids.txt';
$dataPath = 'c:/stagsi/db';

$ids = [];

foreach (file($rowidsFile) as $id) {
 if ($id = trim($id)) {
 $path = $dataPath.'/'.floor($id / 1000).'/';
 rename("$path/c$id.png", "$path/u$id.png");
 $ids[] = $id;
 }
}

Thumbnails/Permanent crop.php • Skip this example (#exCA) • Browse on GitHub • Adjustments (3)

Stagsi Cookbook / Thumbnails (26/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Thumbnails%252FPermanent+crop.php

It takes RowId’s of affected (cropped) objects from a text file ($rowidsFile), performs step 1 above
(renames c into u) and outputs a SQL statement that you should run against that database using SQLite
Browser or command-line sqlite3.exe (this is step 2).

Stagsi must not be running while carrying this out.

Batch Transformation

Let’s imagine we want to make some of our thumbnails grayscale. This can be done with ImageMagick
and cmd.exe kun-fu.

Here’s a batch file that converts all standard thumbnails (of formats that Stagsi recognizes):

Just close Stagsi and run this batch file (replacing the database path accordingly).

Text Overlay with Ruby

Often a good idea is to annotate a thumbnail with some short caption. The below Ruby script (using
RMagick, a Ruby interface to ImageMagick; rmagick.github.io) processes a file in a simple which could
be produced by a spreadsheet program like MS Excel or by hand, where each line is a text to be drawn,
starting with a numerical object’s RowId followed by a space, comma or semicolon. For example:

13, Cool GFS
15 FF XII video
87; Sketching guide

Here’s the script that etches the string from the string file on a thumbnail of every object in the
database (note how it correctly copies the t-file if neither u nor c are found – t-files should never be
edited):

echo 'UPDATE Objects SET
ThumbCropX = 0.0,
ThumbCropY = 0.0,
ThumbCropWidth = 0.0,
ThumbCropHeight = 0.0
WHERE RowId IN (', join(',', $ids), ')';

setlocal ENABLEDELAYEDEXPANSION
cd /D C:\...\Database
for /R %%i in (t*.*) do (
set F=%%i
convert "%%i" -set colorspace Gray -separate -average "u!F:~1!"
)

Thumbnails/Grayscale using ImageMagick.bat • Skip this example (#exNX) • Browse on GitHub • Adjustments

require 'rmagick'
require 'fileutils'

data_path = 'C:/Stagsi/Database'

Thumbnails/Text overlay.rb • Skip this example (#exHO) • Browse on GitHub • Adjustments (2)

Stagsi Cookbook / Thumbnails (27/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Thumbnails%252FGrayscale+using+ImageMagick.bat
https://rmagick.github.io
https://go.soletude.ca/stagsi/ex-code/Thumbnails%252FText+overlay.rb

Supported Formats and Plugins

Stagsi can deal with any kind of files, even those it doesn’t support. “Support” in this case means
automatic thumbnail generation and meta-data extraction. For “unsupported” formats you’ll see
placeholder images in the browser, which you can easily replace by hand (see that section).

The ImportUnknownFormats setting (enabled by default) controls if Stagsi skips unsupported
formats during import or not.

The actual support is provided by plugins (see Plugins for writing your own). Standard plugins coming
with Stagsi by default include:

WpfPlugin.dll – supports popular graphic formats using native C#/WPF capabilities with best
performance: BMP, GIF, animated GIF, PNG, JPEG.
PsdPlugin.dll – supports most PSDs but may fail on those using advanced Photoshop
features – in this case download the Magick plugin.
XamlTunePlugin.dll – supports most SVGs. Download the Magick plugin for complete
support.

IO.read('strings.csv')
 .scan(/^\s*(\d+)(\s*[,;]\s*|\s+)(\S.*)$/)
 .each { |a|
 rowid, delim, str = a
 mask = "#{data_path}/#{(rowid.to_i/1000).floor()}/[cut]#
{rowid}.*"

 files = Dir.glob(mask)
 .map { |f| [File.basename(f)[0], f] }
 .to_h

 if files['c'] then
 file = files['c']
 elsif files['u'] then
 file = files['u']
 elsif files['t']
 dir, file = File.split(files['t'])
 file = "#{dir}/" + file.sub(/./, 'u')
 FileUtils.copy files['t'], file, :verbose => true
 else
 next
 end

 im = Magick::Image.read(file).first
 text = Magick::Draw.new

 # Actual overlaying happens here.
 text.annotate(im, 0, 0, 0, 0, str) {
 self.gravity = Magick::SouthGravity
 self.pointsize = 50
 self.fill = 'black'
 self.font_weight = Magick::BoldWeight
 self.stroke = 'white'
 self.stroke_width = 3
 }

 im.write(file)
 im.destroy!
 }

Stagsi Cookbook / Thumbnails (28/94) 2/11/2024 (5c5cf14)

More standard plugins that you can download from go.soletude.ca/stagsi/forum:

MagickPlugin.dll – a graphics library (ImageMagick) with solid support for a wide range of
formats: PSD, SVG, CUR, EMF, ICO, PCX, TGA, TIFF, TTF, WMF.

These meta-data formats are supported by means of MetadataExtractor: EXIF, IPTC, XMP.

Custom Thumbnails – Manual Generation

To “support” a format, you could write a tool to create thumbnails for data files that are missing them.
Unlike writing a plugin, you can use any language (not just C#) but you will have to run this program or
script by hand (it won’t respond to /rethumb).

Here’s a C/C++ program that renders file type icon for every object that has no thumbnail (t-automatic
or u-user-assigned) – assuming ThumbFormat is PNG:

// Compile with: cl /TP this.cpp_or_.c /link gdiplus.lib shell32.lib

#include <windows.h>
#include <strsafe.h>
#include <Gdiplus.h>

bool has_thumb(wchar_t *data_path, wchar_t *dir, wchar_t *prefix,
long rowid) {
 wchar_t mask[MAX_PATH];
 StringCchPrintfW(mask, MAX_PATH, L"%s\\%s\\%s%ld.*", data_path,
dir, prefix, rowid);
 WIN32_FIND_DATAW find = {0};
 HANDLE handle = FindFirstFileW(mask, &find);
 if (handle == INVALID_HANDLE_VALUE) {
 return false;
 }
 FindClose(handle);
 return true;
}

// Procedural-style GDI+. Close to black magic.
// https://forum.antichat.ru/threads/268293/
bool hicon_to_png(wchar_t *dest, HICON icon) {
 // http://www.masm32.com/board/index.php?topic=5782.0
 // Type: image/bmp, GUID: {557CF400-1A04-11D3-9A73-
0000F81EF32E}
 // Type: image/jpeg, GUID: {557CF401-1A04-11D3-9A73-
0000F81EF32E}
 // Type: image/gif, GUID: {557CF402-1A04-11D3-9A73-
0000F81EF32E}
 // Type: image/tiff, GUID: {557CF405-1A04-11D3-9A73-
0000F81EF32E}
 // Type: image/png, GUID: {557CF406-1A04-11D3-9A73-
0000F81EF32E}
 GUID png_format = {0x557CF406, 0x1A04, 0x11D3, 0x9A, 0x73, 0x00,
0x00, 0xF8, 0x1E, 0xF3, 0x2E};
 Gdiplus::GdiplusStartupInput si = {0};
 si.GdiplusVersion = 1;
 ULONG_PTR token;
 int res = Gdiplus::GdiplusStartup(&token, &si, NULL);
 if (!res) {
 Gdiplus::GpBitmap *bmp;
 res = Gdiplus::DllExports::GdipCreateBitmapFromHICON(icon,

Thumbnails/Generate from file icon.c • Skip this example (#exEO) • Browse on GitHub

Stagsi Cookbook / Thumbnails (29/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/forum
https://go.soletude.ca/stagsi/ex-code/Thumbnails%252FGenerate+from+file+icon.c

&bmp);
 if (!res) {
 res = Gdiplus::DllExports::GdipSaveImageToFile(bmp,
dest, &png_format, NULL);
 Gdiplus::DllExports::GdipDisposeImage(bmp);
 }
 Gdiplus::GdiplusShutdown(token);
 }
 return !res;
}

int wmain(int argc, wchar_t** argv) {
 wchar_t *data_path = argv[1];

 wchar_t dir_mask[MAX_PATH];
 HRESULT o = StringCchPrintfW(dir_mask, MAX_PATH, L"%s*",
data_path);
 WIN32_FIND_DATAW dir = {0};
 HANDLE dir_handle = FindFirstFileW(dir_mask, &dir);

 if (dir_handle == INVALID_HANDLE_VALUE) {
 return 1;
 }

 do {
 wchar_t *end = dir.cFileName;
 while (*end && *end >= L'0' && *end <= L'9') { end++; }
 if (*end) { continue; }

 wchar_t file_mask[MAX_PATH];
 StringCchPrintfW(file_mask, MAX_PATH, L"%s\\%s*",
data_path, dir.cFileName);
 WIN32_FIND_DATAW file = {0};
 HANDLE file_handle = FindFirstFileW(file_mask, &file);

 if (file_handle == INVALID_HANDLE_VALUE) {
 continue;
 }

 do {
 // strtol()/wcstol() allow leading whitespace and sign.
 if (*file.cFileName < L'0' || *file.cFileName > L'9') {
 continue;
 }

 wchar_t *end;
 long rowid = wcstol(file.cFileName, &end, 10);
 wchar_t data_file[MAX_PATH];
 StringCchPrintfW(data_file, MAX_PATH, L"%s\\%s\\%s",
data_path, dir.cFileName, file.cFileName);
 if (*end == L'.') {
 // Not a link file.
 } else if (!*end) {
 HANDLE link_handle = CreateFileW(data_file,
GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL);
 DWORD link_read;
 char buf[MAX_PATH];
 // MultiByteToWideChar() won't write '\0'.
 memset(data_file, 0, sizeof(data_file));
 if (link_handle == INVALID_HANDLE_VALUE ||
 !ReadFile(link_handle, buf, sizeof(buf) - 1,
&link_read, NULL) ||
 !link_read ||
 !MultiByteToWideChar(CP_UTF8, 0, buf, link_read,
data_file, MAX_PATH)) {

Stagsi Cookbook / Thumbnails (30/94) 2/11/2024 (5c5cf14)

Custom Thumbnails – Via Scripts

If you have a small number of objects that need custom thumbnails, a more efficient approach is to
apply them from within Stagsi on demand.

First, write a script that extracts object ID from the path it’s given (the file’s name is u123.ext where
123 is the ID – see DataNumbered), retrieves required info by that ID (e.g. the object’s main file),
generates a thumbnail image and saves it to that path (argv[1]).

Second, invoke Stagsi’s thumbnail dialog with F3 , then press F3 again to call an external editor. A list
of programs will appear (unless you have configured it to always call a specific program) – add your
script to this list. Now you can quickly call it for a particular object that needs custom thumbnails,
working like specialized Tools.

Custom Thumbnails – C# Plugin

Plugins are loaded (in arbitrary order) from two folders: Plugins near Stagsi’s EXE and Plugins in
the database. A plugin may be either a .dll or a .cs file. .cs is a C# source code file compiled and
loaded on runtime as if it was a pre-compiled DLL, with implicit references to DLLs already loaded into
Stagsi and to all DLLs in all Plugins folders, and with explicit reference from // ref:
c:\path\to.dll comment(s) in the end of the file (ignoring blank lines).

Note: our community repository go.soletude.ca/stagsi/cookbook has a few plugins which show how to
wrap a C++ library into a C# plugin, e.g. psd2png.

Each plugin must define one or more classes containing a static function named
StagsiPlugin() returning void and accepting a single argument typed

 continue;
 }
 CloseHandle(link_handle);
 } else {
 continue;
 }

 if (has_thumb(data_path, dir.cFileName, L"t", rowid) ||
 has_thumb(data_path, dir.cFileName, L"u", rowid)) {
 continue;
 }

 SHFILEINFOW info = {0};
 SHGetFileInfoW(data_file, 0, &info, sizeof(info),
SHGFI_ICON | SHGFI_LARGEICON);

 wchar_t thumb_file[MAX_PATH];
 StringCchPrintfW(thumb_file, MAX_PATH,
L"%s\\%s\\u%ld.png", data_path, dir.cFileName, rowid);

 hicon_to_png(thumb_file, info.hIcon);
 } while (FindNextFileW(file_handle, &file));

 FindClose(file_handle);
 } while (FindNextFileW(dir_handle, &dir));

 FindClose(dir_handle);
}

Stagsi Cookbook / Thumbnails (31/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/cookbook

Soletude.Stagsi.Plugins.IPluginService exposing this method (version 1802 added
SortingPlugins):

void RegisterImageLoaderV1(Func<Stream, IImageLoadingV1,
BitmapSource>, ImageLoaderV1)

ImageLoaderV1 specifies additional configuration and currently contains just one property:
FileExtensions (an array of string) – typical file name extensions (without the period) for the
kind of format this handler is able to process. This is used in file dialogs and internal optimizations and
may be empty. First string is considered the “canonical” extension visible as a group title for other
extensions (aliases) – e.g. JPG, alias: JPEG.

When Stagsi needs to decode a file into an image data it calls all registered handlers (in arbitrary order)
giving them access to the file’s raw data (Stream) and its information (IImageLoadingV1). If a
handler is unable to process the data it returns null.

Stream has its pointer at the beginning of the data and may or may not correspond to a local file. The
handler may close it (CanRead() returning false – may happen if the stream’s handle is transferred
to native code) or advance regardless if null is returned or not.

Note: regardless of FileExtensions a handler may be called for any input file (which may not be a
local file or may have an invalid extension, e.g. .png instead of .gif) and so must check if the input
Stream contains data that it recognizes, e.g. using “magic signatures” (see the popular file utility
astron.com or this common signature repository www.garykessler.net/Library/file_sigs.h…).

IImageLoadingV1 fields:

FilePath (string) – absolute path to the original file; may be null. Avoid using it as a final
data format check because file extensions may be wrong.
QueryOnly (set) – requested information; if null then complete decoding must be performed,
else only these fields may be set and a 0x0 BitmapSource returned to indicate a supported
format. It’s an optimization – the handler may ignore it loading the image anyway or it may set
more fields than requested.
Width and Height (double) – desired maximum dimensions of the returned
BitmapSource. Stagsi scales the result as appropriate in any case so this only makes sence for
special scaling algorithms, e.g. if the original graphics is vector. If 0, the original dimensions must
be used (if there are none then the plugin is free to choose them). The handler must set both to
the original image’s dimensions on return.

Note: normally you would want to preserve the aspect ratio of the original image instead of
distorting it to fit the given Width/Height.

IsAnimated (bool, ignored if null is returned) – may be set by the handler if Stream
“contains” more than one frame (an animated GIF, video, etc.) to assign the Animated system
tag.
Format (string, ignored if null is returned) – may be set to specify the “format” system tag,
typically the “canonical” file extension for this kind of data (e.g. TIFF, not TIF). If blank then the
original file’s extension is used, or dat if it’s unavailable.

Stagsi Cookbook / Thumbnails (32/94) 2/11/2024 (5c5cf14)

http://astron.com
https://www.garykessler.net/Library/file_sigs.html

Conventions for plugin writers (assuming a hypothetical plugin named “WebPage”):

Add “Plugin” to the DLL’s file name: WebPagePlugin.dll. Many plugins require an external
library (e.g. Magick.dll for an ImageMagick plugin) and this makes it clearer which one is a
Stagsi plugin and which is its dependency.
Return the image as is if your plugin doesn’t handle resizing specially (e.g. using xBRZ or resizing
an originally vector image) to let Stagsi resize it as appropriate according to program settings (e.g.
sharply for small images).
Return a raw bitmap, not an encoded image (e.g. PngBitmapEncoder) to avoid the overhead of
first decoding it in the Stagsi core and then encoding to the user’s ThumbFormat (e.g. JPEG).

You can debug your plugin with Visual Studio’s Attach to process command, setting a breakpoint in
your plugin’s code and invoking an operation in Stagsi that calls it (e.g. Copy in Object Browser).

With all this, a sample plugin rendering text files into the thumbnail’s box (save as
Plugins\TxtPlugin.cs and restart Stagsi):

using System.Globalization;
using System.IO;
using System.Text;
using System.Windows.Media.Imaging;
using System.Windows.Media;
using System.Windows;

namespace Soletude.Stagsi.Plugins
{
 public class Txt
 {
 private const string TxtFormatName = "txt";
 private const string EndLineChars = "\r\n";
 private const string RenderFontName = "Arial";
 private const int MaxLength = 10000;
 private const double DefaultSize = 200;
 private static readonly string[] InvalidStrings = {"\0"};

 public static void StagsiPlugin(IPluginService service)
 {
 service.RegisterImageLoaderV1(RenderTxt, new
ImageLoaderV1 { FileExtensions = new[] { TxtFormatName }});
 }

 private static BitmapSource RenderTxt(Stream input,
IImageLoadingV1 parameters)
 {
 var len = input.Length;
 if (input.Length > MaxLength)
 {
 len = MaxLength;
 }
 byte[] buf = new byte[len];
 input.Read(buf, 0, buf.Length);
 string allText = Encoding.UTF8.GetString(buf);

 foreach (var v in InvalidStrings)
 {
 if (allText.Contains(v))
 {

Thumbnails/TxtPlugin.cs • Skip this example (#exGP) • Browse on GitHub • Adjustments (6)

Stagsi Cookbook / Thumbnails (33/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Thumbnails%252FTxtPlugin.cs

Browser Copy
This is one of those seemingly unassuming commands that you find more and more uses for every day.

When you perform a copy on a selection in the browser, the clipboard receives data of 3 types:

Plain text string – for pasting to another Stagsi process and/or performing advanced tasks on.
Image data – of the first object recognized as an image (for which Stagsi can generate thumbnails
using plugins). Can be pasted into any graphic editor like MS Paint, Photoshop, etc. Can be also

 // Binary data - skip.
 return null;
 }
 }

 allText = allText.Replace(EndLineChars, " ");
 var txt = new FormattedText(allText,
CultureInfo.CurrentCulture, FlowDirection.LeftToRight, new
Typeface(RenderFontName), 10.0, Brushes.Black);
 return WriteTextToImage(txt, new Point(0, 0),
parameters);
 }

 public static BitmapSource WriteTextToImage(FormattedText
text, Point position, IImageLoadingV1 parameters)
 {
 var wid = parameters.Width;
 if (wid == 0 || double.IsNaN(wid))
 {
 wid = DefaultSize;
 }

 var hei = parameters.Height;
 if (hei == 0 || double.IsNaN(hei))
 {
 hei = DefaultSize;
 }

 var visual = new DrawingVisual();
 var prop = hei / wid;
 hei = (int) (wid * prop);

 text.MaxTextWidth = wid;
 using (var dc = visual.RenderOpen())
 {
 dc.DrawRectangle(Brushes.White, null, new Rect(new
Size(wid, hei)));
 dc.DrawText(text, position);
 }

 var target = new RenderTargetBitmap((int) wid, (int)
hei, 96.0, 96.0, PixelFormats.Default);
 target.Render(visual);

 parameters.Format = TxtFormatName;

 return target;
 }
 }
}

Stagsi Cookbook / Browser Copy (34/94) 2/11/2024 (5c5cf14)

done with simple drag & drop allowing to use Stagsi as a graphics library – try dropping into MS
Word.
Windows Explorer file list – for pasting into some folder on your system. Much like the Export
command. Drag & drop can be used here as well.

The first type is the main source of this command’s versatility – we’ll even call it “the Stagsi interchange
format”. The string it creates looks like this:

Stagsi JSON 1 {JSON}

First three parts are constants (“1” is the format version number), acting as a marker: if a string in the
clipboard begins with this sequence then it’s assumed to be “paste-able”.

The fourth part is a multi-line JSON object which mimics the database structure with a few extra fields.
This object holds information about the selection and is independent of the Stagsi process that has
created it (i.e. this string can be pasted to another Stagsi process after the originating Stagsi was closed).

Objects.FilePath – path to the object’s file (which was imported); for linked mode, this is the
path to the “real” file (outside of the database).
Objects.FileLink – path to the link data file (extensionless) if the object was imported in
linked mode, otherwise null.
Objects.CustomThumb – path to a user-assigned custom thumbnail or null if there’s none.
Tags.IconPath – path to the tag’s icon or null if there’s none.

Synthesized Paste

Often you need to import data from another tool, e.g. from an XML dump of a custom format. One way
is to write to Stagsi.sqlite directly as we have already demonstrated:

Works even if you have 100,000s of entries to import.
But your language must support SQLite (or calling sqlite3.exe).
Usually issuing SQL queries is not very convenient.
Stagsi must be closed while the database is being updated.
Your script must be updated when database schema changes in a future Stagsi release.

Another way is using the JSON format produced by the Copy command where you produce this JSON
and Stagsi consumes it by means of Paste:

Uses system clipboard and so will fail on extremely large number of entries (that can’t fit into the
clipboard).
Because all entries have to be packed into the same JSON object, uses much more memory than
direct SQLite interop.
No dependency on an SQLite library or its executable, or SQL in general.
You do need Stagsi to actually incorporate your changes but it doesn’t need to be restarted to see
them.

Stagsi Cookbook / Browser Copy (35/94) 2/11/2024 (5c5cf14)

The format is more relaxed and future-proof. Most fields can be omitted to use the defaults (e.g.
Tags.Color, ObjectTags.Weight, Objects.Random).

Below is a script converting XML data from MyAnimeList.Net into Stagsi’s JSON format creating a
temporary .url file for each object linking to that series’ page on the website. For Paste to work, the
JSON must be prepended by the version info (see above, e.g. Stagsi JSON 1). You can use clip to
copy a string to the clipboard from the console.

User’s score (series rating) appears both as a tag (under Score) and a Weight so that to search results
by this score you just include the ~Score into your search query (and enable Relevant first).

<?php
set_error_handler(function ($severity, $msg, $file, $line) {
 throw new ErrorException($msg, 0, $severity, $file, $line);
}, -1);

mb_internal_encoding('UTF-8');

list($self, $file) = $argv + ['', ''];

if (!is_file($file)) {
 echo "Usage: php $self MyAnimeList.xml";
 exit(1);
}

$xml = new DOMDocument;
$xml->load($file);
$xpath = new DOMXPath($xml);
$objects = $info = [];

$childToTag = [
 'series_type' => 'Type',
 'series_episodes' => 'Episodes',
 'my_score' => 'Score',
 'my_status' => 'Status',
];

foreach ($xpath->evaluate('//anime') as $anime) {
 $object = [];
 foreach ($anime->childNodes as $child) {
 $ref = &$childToTag[$child->nodeName];
 if ($ref) {
 $object[$ref] = $child->textContent;
 } elseif ($child->nodeName === 'series_title') {
 $info[count($objects)]['title'] = $child->textContent;
 } elseif ($child->nodeName === 'series_animedb_id') {
 $info[count($objects)]['id'] = $child->textContent;
 }
 }
 $objects[] = $object;
}

$json = ['Objects' => [], 'Tags' => [], 'ObjectTags' => []];
$temps = [];

foreach ($objects as $id => $object) {
 $temps[] = $temp = tempnam(sys_get_temp_dir(), '').'.url';
 file_put_contents($temp, "
[InternetShortcut]\nURL=https://myanimelist.net/anime/".$info[$id]
['id']);

Import/Convert MAL.php • Skip this example (#exLQ) • Browse on GitHub

Stagsi Cookbook / Browser Copy (36/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Import%252FConvert+MAL.php

Merge and Split Databases

Two obvious operations for Copy/Paste between Stagsi processes are to merge and split databases.

Let’s imagine you have a big database and you want to extract a portion of it, for example, for sharing
with someone else:

Select files that you want to “extract”. If you can’t get them all into the same list (e.g. because they
need to be located using different searches), then add a temporary tag to such files, perform a
search for this tag, select (Ctrl+A) and copy (Ctrl+C) all results, then delete the tag.

 $json['Objects'][] = [
 'CreationTime' => time(),
 'FilePath' => $temp,
 'Random' => mt_rand(),
 'RowId' => $id + 1,
 'Title' => $info[$id]['title'],
];

 foreach ($object as $tag => $value) {
 $tag = findCreateTag($json['Tags'], [$tag, $value]);
 $json['ObjectTags'][] = [
 'ObjectRowId' => $id + 1,
 'TagRowId' => $tag['RowId'],
 'Weight' => $tag === 'Score' ? $value : 0,
];
 }
}

echo 'Stagsi JSON 1 '.json_encode($json, /*JSON_PRETTY_PRINT+*/ 0);

function findTag(array $tags, $title, $parent = null) {
 foreach ($tags as $ttag) {
 if ($ttag['ParentRowId'] === $parent and
 mb_strtolower($ttag['Title']) === mb_strtolower($title)) {
 return $ttag;
 }
 }
}

function findCreateTag(array &$tags, array $path) {
 static $nextID = 1;
 $parent = null;

 foreach ($path as $ptag) {
 $ttag = findTag($tags, $ptag, $parent);
 if (!$ttag) {
 $tags[] = $ttag = [
 'CreationTime' => time(),
 'ParentRowId' => $parent,
 'RowId' => $nextID++,
 'Title' => (string) $ptag,
];
 }
 $parent = $ttag['RowId'];
 }

 return $ttag;
}

Stagsi Cookbook / Browser Copy (37/94) 2/11/2024 (5c5cf14)

Create a new database and open it. This can be as simple as creating an empty directory and
dragging & dropping it from Windows Explorer into a running Stagsi’s window or onto its icon on
the desktop.
Paste (Ctrl+V) results copied earlier into this new database’s window.

Now let’s imaging you have two databases, perhaps created at different times, that you want to merge
into one (it’s generally easier to manage one database than multiple smaller ones):

Open the first database you’re going to merge.
If you want to later tell from which database an object has came from, add some tag to all objects
in this database.
Open an empty search tab (blank search query) and select (Ctrl+A) and copy (Ctrl+C) all
objects.
Switch to the main (“big”) database. It can be a brand new database or one of the to-be-merged
(in this case all other databases are put into it). Do paste (Ctrl+V).
Close the first database, open the second and repeat the same steps until you merge all of them.

Confirming Changes (Diff)

Let’s imagine you are performing a large clean-up of your database, adding and removing tags from
hundreds of objects. In the end of the day, you want to confirm what exactly was changed before you
commit the version.

The Copy command can be used to quickly convert part of a database into a textual representation. And
for text, there are tools called “diff”/"merge" viewers: they take 2 or more files, compare them line-by-
line and display the differences. For Windows, WinMerge can be used, or a similar tool from virtually
any version-control system (GUIs for git, SVN, etc.). Linux has a built-in console command diff, or a GUI
called meld.

Before beginning to modify the database, run a search on the objects that will be affected (or
search for empty string if all of them will be).
Select all (Ctrl+A) and Copy (Ctrl+C).
Open a text editor such as Notepad and Paste (Ctrl+V), then save (Ctrl+S) to a text file, say,
before.txt.
Perform the modifications.
Repeat the steps in the beginning: run the search, Select all results, Copy and Paste to a new text
document, and then save as another file, say, after.txt (alongside the first one).
Select both files in Windows Explorer.
Bring up the files’ context menu and select the diff command of your choice.
Go through all the changes to confirm them, possibly switching back to Stagsi to amend things.

Multiple Clipboards

The text inserted into the clipboard by the Copy command is self-contained – the original Stagsi process
is not required for Paste into another Stagsi process to work.

Stagsi Cookbook / Browser Copy (38/94) 2/11/2024 (5c5cf14)

This means you can paste results of the Copy command into a text editor like Notepad leaving its
window open, perform another Copy followed by Paste into a new window, etc. and then go back to any
of those windows, Copy everything and Paste into Stagsi later.

In an extreme case, you can even save the copied data to a text file and reuse it much later, even after a
reboot or weeks of regular usage. It will work as long as file paths (to data files, thumbnail files, etc.)
remain valid.

AutoHotKey

AutoHotKey, or AHK for short, is a powerful automation utility based on scripts. Here’s a script that
displays a tooltip with the number of copied objects imported in linked mode:

Node.js

Even though JSON is native to most scripting languages, many of them – like PHP and Node.js
(JavaScript) – don’t make it easy to access the system clipboard (mostly because there’s no cross-
platform way of doing so).

The simplest way is to use an external tool. In the following script we’re using nircmd (which should be
in your %PATH%) to obtain Stagsi clipboard text and output the total size of all copied object files:

Notepad 2e

Notepad 2e is a bare-bone text editor with advanced data manipulation capabilities aimed at quick
execution of common one-time operations (in contrast to tools like sed and vim which shine on

#Persistent
OnClipboardChange:
StringLeft, Start, Clipboard, 7
if (Start = "Stagsi ")
{
 StrReplace(Clipboard, """FileLink"": null,", , CopiedCount)
 StrReplace(Clipboard, """FileLink"": ", , TotalCount)
 LinkedCount := TotalCount - CopiedCount
 ToolTip %LinkedCount% out of %TotalCount% objects are linked
 Sleep 5000
 ToolTip
}
return

Misc/Copy tooltip.ahk • Skip this example (#exNF) • Browse on GitHub

var file = require('fs').mkdtempSync(os.tmpdir() + '/') +
'/clip.txt'
require('child_process').execSync('nircmdc64 clipboard writefile "'
+ file + '"')
var clipboard = require('fs').readFileSync(file, {encoding: 'utf8'})
var [, data] = clipboard.match(/^Stagsi JSON \d+ (\{.+)$/s)
var sum = JSON.parse(data).Objects.reduce((cur, obj) => cur +
obj.FileSize, 0)
console.log(`Total size of all objects: ${sum} bytes`)

Misc/Copied file size.js • Skip this example (#exRA) • Browse on GitHub

Stagsi Cookbook / Browser Copy (39/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Misc%252FCopy+tooltip.ahk
https://go.soletude.ca/stagsi/ex-code/Misc%252FCopied+file+size.js

repetitive tasks).

For example, if you want to prepend “Game” to titles of all objects before they’re pasted:

Paste (Ctrl+V) Stagsi data into a blank Notepad 2e window.
Do Replace (Ctrl+H) on the entire document, from string "Title": " to string "Title":
"Game:.
Do Copy All (Alt+C) to clipboard (which is a single-keystroke version of Select All followed by
Copy) and paste to the second Stagsi’s window.

Another example, to obtain a list of objects that came (OriginalPath) from the E:\Important
directory or its subdirectories:

Paste (Ctrl+V) Stagsi data into a blank Notepad 2e window.
Do Replace (Ctrl+H) on the entire document, from string }, to string },\n with enabled
Transform backslashes option. This adds a blank line after each individual object.
Do Select all (Ctrl+A) followed by Join Paragraphs (Ctrl+Shift+J). This makes it so that
each object takes 1 line, not more.
Open Find (Ctrl+F), enter the search string of E:\Important and press Grep (Alt+G). Now you
have 1 line per each object which has this string somewhere in its properties (you can easily
adjust the search string to be more precise, such as to "OriginalPath": "E:\Important).
Next actions depend on what you want to do with this data. Usually you’d want a list of IDs for
searching for these objects in Stagsi. For this, do Replace from string .*"rowid": |,.* to
blank string with enabled Regular expression search. The expression stands for “replace
everything before ‘rowid’ and after comma with nothing, i.e. delete”.
As a result, you got 1 ID per line. To search for them in Stagsi, they need to be converted to 1 line
of form /id1 | /id2 | /id3 | Do Modify Lines (Alt+M) with the prefix text of | /
and then Join Lines (Ctrl+J). As a result, you’ll get an extra pipe at the beginning which you just
delete by hand.
Finally, do Copy All (Alt+C) to clipboard and paste to Stagsi’s search input.

Spreadsheet

Suppose you want to make a neat table of your objects, perhaps for sorting, filtering or some other
manipulations that spreadsheet programs are great at.

In this example we’re going to combine Notepad 2e magic with a lightweight alternative to MS Excel (1
EXE file, less than 2 MiB) called Spread32.

First, we need to format Stagsi data so that it becomes 1 line per object, with object properties
separated with a Tab character:

Paste (Ctrl+V) Stagsi data into a blank Notepad 2e window.
Remove all arrays except Objects by seeking the start of this array using Find Matching Brace
(Ctrl+B), then deleting the part before it and the part after it (again with Ctrl+B).
An example of text you should have at this point:

Stagsi Cookbook / Browser Copy (40/94) 2/11/2024 (5c5cf14)

Stagsi JSON 1 {
 "ObjectTags": [
 ...
],
 "Objects": [

 {
 "CreationTime": "1554727353172",
 "CustomThumb": false,
 "CustomThumbPath": null,
 "FileLink": null,
 ...

],
 "Tags": [
 ...
]
 }

Do Replace (Ctrl+H), from string [^:]+: to string \t with enabled Regular expression search.
This replaces property names with Tab characters, which will be later recognized by the
spreadsheet program.
Do another Replace (Ctrl+H), from string \{$ to blank string with enabled Regular expression
search. This creates blank line between each object.
Do Join Paragraphics (Ctrl+Shift+J). Now you have 1 object per line.
Finally, you can do some optional clean up using Remove Blank Lines (Alt+R), Strip Last
Character (Alt+U).

Once you got the prepared data, turn to the spreadsheet (we’ll be assuming you want to obtain IDs for
objects which file size is above or below some threshold):

Copy lines (some or all, with Alt+C) from Notepad 2e and paste to the spreadsheet program.
File size is a numerical field. Depending on your program, it might or might not be one.
For example, MS Excel automatically removes comma and spaces on paste so nothing needs to be
done. Spread32 doesn’t do that but this can be fixed by running Text to Columns command on the
entire file size column. For others, you can use Notepad 2e’s Replace from string , \t to string
\t in Regular expression search mode – this removes stray commas with spaces.
Sort the file size column.
Find where objects with specific file size start. For example, find objects above 1000000 in size
(roughly 1 MiB).
Make a selection in the RowId column from the located row to the start or end of the
spreadsheet, and copy it.
Paste to Notepad 2e and convert a series of IDs into a Stagsi search expression: do Modify Lines
(Alt+M) with the prefix text of | / and then Join Lines (Ctrl+J), and remove the first pipe.
The resulting line can be pasted to Stagsi’s query input.

Import
Duplicates & Hashes
Stagsi Cookbook / Import (41/94) 2/11/2024 (5c5cf14)

We often refer to “duplicate” files but what does this mean exactly in Stagsi?

To answer this question, we need to briefly explain what a “hash” is (related terms are “cryptographic
hash”, “digest” and “checksum”). In layman’s terms, a “hash” is short for “hash function” that, when fed
some data, produces some seemingly random string of a fixed length. The string depends on the data,
so that if exactly the same data is fed again, exactly the same string is produced; if the input data has
changed even for a little bit, then the string will be different too.

One widely used hash function algorithm is MD5 – short for “Message Digest-5”. Contrary to the name,
“message” doesn’t imply some human-readable text – it works as good for binary data (images, etc.).
Here are MD5 hashes of several different strings – as you see, even a mere capitalization resulted in a
drastically different hash:

string "hello": 5d41402abc4b2a76b9719d911017c592
string "Hello": 8b1a9953c4611296a827abf8c47804d7
string "HELLO": eb61eead90e3b899c6bcbe27ac581660

When you import a file, Stagsi calculates its MD5 hash and checks if the database already has an entry
with the same hash. If it does, the file is considered “duplicate” and usually not imported (depending on
the settings).

One obvious advantage of this approach is that it does not depend on file’s name, path, modification
time or any other properties except the file’s contents. If you have 10 Terabytes worth of backups and
you want to extract only non-duplicate files, it would take ages to sort by hand, especially if paths and
names cannot be trusted. With Stagsi, you simply dump the entire archive and let it chew through. In
the end, only files with unique contents will remain, and with some scripting you can export such
objects preserving the original folder structure (using OriginalPath field and/or Import’s Regexp
filters).

Note: of course, one cannot fit all possible variations of data within anyhow short string. There is a
chance – called “hash collision” – that two different data would produce identical hashes; however, it is
so slim for practical purposes that Stagsi ignores it completely, along with the absolute majority of
other software.

Zero-Sized Files and the Null Hash

An MD5 hash of an empty “message” (input) is always d41d8cd98f00b204e9800998ecf8427e.
However, Stagsi treats all empty files (0 size) as unique, assuming their Hash to be null – a special
value that does not equal anything, even another null.

This allows you to have any number of empty files in your database. Such files are still separate – each
has its own tags, thumbnail, RowId, etc. but when you import another empty file, it is not marked as
duplicate. Use empty files where the data (file) itself has no value, only its “meta-data” (tags,
attachments, etc.) is useful.

Note: remember that in SQL to compare something with NULL you should use IS, not = – SqlNULL.

Fuzzy Duplicate Images Detection

Two image files may have different hashes even though their “contents” appears to be identical. It’s a

Stagsi Cookbook / Import (42/94) 2/11/2024 (5c5cf14)

big problem when using software that puts tags into the files themselves (ahem, Adobe Bridge, ahem,
Apple iTunes) because once changed, you cannot tell if two files are the same by merely comparing
their contents (what hashing does) and you have to use heavy machinery for this task.

One way to compare two images is using ImageMagick’s compare utility:

compare.exe -verbose -metric mae Image1.png Image2.png diff.png

There are many ways to “compare” images. -metric of mae simply compares pixel data (colors).
diff.png is a visual difference between Image1.png and Image2.png.
-verbose makes compare output the difference in text as 4 pairs of numbers with 0 meaning
“identical”.

You can write a script for checking a batch of files, telling you which pictures are the same dispite
differences in their raw file data.

Explore Skipped

If an import session didn’t process all files, Stagsi keeps the import dialog open with the list of files
reflecting the skipped items. However, it’s not very convenient to work with.

If you want to save such skipped items for later, browse them in Windows Explorer or process in some
way, use the Copy command (Ctrl+C). As a result, the clipboard receives two types of data:

Plain text string – can be pasted into a text editor. Contains 1 file path on a line. For example, if
most skipped files appear to come from F:\Junk directory, you can check if there are any others
by pasting into a blank Notepad 2e window, opening Find (Ctrl+F), setting the search string to
F:\Junk\ and pressing Ungrep.
Windows Explorer file list – for pasting into some folder on your system. Sadly, Explorer only
allows regular Paste, not Paste shortcut but you can simulate this with other commands.

If you want to explore skipped files but you don’t want to copy them entirely, you can create shortcuts
using nircmd:

Paste (Ctrl+V) the skipped file list into a blank Notepad 2e window.
Do Modify Lines (Alt+M) with the prefix text of " and the append text of ". As a result, all paths
are now wrapped in quotes.
Edit the text to look like this (nevermind that (and) brackets end up being on different lines):

for %%i in (file list...) do nircmd shortcut %%i E:\Shortcuts
%%i

Save it as a .bat file somewhere and run by double clicking in Windows Explorer or using the
Launch command (Ctrl+L).
The .bat file is no more needed and can be deleted.

Tags by Wildcard
Stagsi Cookbook / Import (43/94) 2/11/2024 (5c5cf14)

Often files that we are importing were already organized into some sensible directory structure.
For example, photos from this year’s birthday might be inside a folder named Birthday-2019. If
there are hundreds of files, it’s nearly impossible (and unnecessary!) to tag them all manually with the
same tag.

Stagsi can add tags during import based on a wildcard match. Using our photos example, we can create
the following tag hierarchy:

+ Personal
 + Birthdays
 + 2018
 + 2019
 + Trips
 + 2019
 + Japan
 + Spain

Next, we add a wildcard tagging rule for each set of tags belonging to a particular path. A “wildcard” is a
simple string with two special symbols: * matching 0 or more characters (any) and ? matching exactly 1
character (any).

For example:

\Birthday-2019 wildcard matches all files which have Birthday-2019 folder as their
parent (immediate or not).
Birthday-201? wildcard matches files with “Birthday-201” plus any symbol somewhere in
their file name or in one of their parent folders’ name, like “My Birthday-2018.jpg”.
*\Trip** wildcard matches files having a folder beginning with “Trip” like “Trip to Spain”.
*.jpg wildcard matches all files with the “jpg” extension. Note that it’s usually not needed to tag
files by extension because for recognized formats (for which thumbnails can be generated) Stagsi
adds a special system tag of that format (not extension).
R:* wildcard matches files on the R: disk – perhaps your archive or backup.
* wildcard always matches and can be used to assign a tag to every file being imported.
For example, 2 rules can be made: one for *Birthday* with “birthday” tag, another for * with
“all” tag, allowing you to locate all imported images that had no “birthday” tag with “all -birthday”.
Or you could use the special “Last Imported” system tag if the “all” tag were only temporary (until
next import).

Remember: if you want to apply such rules after importing, you can simply re-import the same files
(even if they’re in another location, they’re identified by content hashes) as long as duplicate mode is
set to “append”.

Tags by Regular Expression (RegExp)

If you are importing files which already have a good directory structure, you may want to preserve
some of that structure in form of tags. You can do this with wildcards, but only if the number of tags is
small and/or known beforehand – because you cannot create a new tag from a file path dynamically.

This is where regular expressions come into play. They are extremely powerful but also, admittedly,

Stagsi Cookbook / Import (44/94) 2/11/2024 (5c5cf14)

more cryptic than simple wildcards. The following explanation assumes you have a basic knowledge of
their syntax. Online resources can help you in building and validating expressions: uiregex.com,
regex101.com, regexr.com.

Let’s imagine you are importing a bunch of game screenshots, organized by release year and game
name:

...\1994\Warcraft: Orcs & Humans\Screenshot0001.png

...\1995\Command & Conquer\...

...\1995\Heroes of Might and Magic\...

...\1995\Need for Speed, The\...

...\1996\Tomb Raider\...

...\1996\Diablo\...

You want every file to be tagged with:

The release year under the Years tag – such as “Years/1994” for the first Warcraft.
The game’s name under the Titles tag – “Titles/Warcraft: Orcs & Humans”.
Additionally, the name must appear under the game’s year tag – “Years/1994/Warcraft: Orcs &
Humans”.

As you notice, out of these tags we only know 2 tags in advance: root Years and Titles tags. Others
need to be extracted from the file names of each file being imported.

We can solve this with a single regular expression:

\\(\d{4})\\([^\\]+)\\

Let’s break it down:

\\start matching on any backslash
(backslash is special and so needs to be doubled)
(start a capture group
 \dmatch any digit
 {4}match exactly 4 instances of the preceding term
)end the capture group
\\match a backslash
(start another capture group
 [^\\]match anything ([]) that is not (^) a backslash (\\)
 +match 1 or more instances of the preceding term
)end the capture group
\\match a backslash

The first file name on our list matches nicely, producing 2 capture groups:

...\1994\Warcraft: Orcs & Humans\...
group 1 = 1994
group 2 = Warcraft: Orcs & Humans

Now we have groups that hold our desired tag names. How do we assign them?
Stagsi Cookbook / Import (45/94) 2/11/2024 (5c5cf14)

https://uiregex.com
https://regex101.com
https://regexr.com

Each regular expression tagging rule has both an expression and a replacement strings. The expression
we have just made. The replacement is simpler – it’s a pipe-separated list of tag names (in long form,
with parents) where $n (like $1) are replaced by the n’th group’s contents. Named groups can be also
used: matched with (?<named>...) and replaced by ${name}.

So the second part of the spell is this replacement string:

Years/$1 | Titles/$2 | Years/$1/$2

…which for our first file name evaluates to:

Years/1994 | Titles/Warcraft: Orcs & Humans | Years/1994/Warcraft:
Orcs & Humans

Stagsi breaks it down into 3 tags, creates tags (parents and the tag itself) as needed and assigns the tags
to the file being imported.

Tags From Custom Sources

Naturally, it’s impossible for a single program to account for every existing meta-data format and
consider all possible users’ preferences.

Stagsi does not try to do that. Instead, it provides core support for only a few well-known and popular
meta-data formats (such as EXIF used in images) and allows you to supply tags for other situations
during import using a simple JSON file containing an array of objects with keys: File (imported file’s
path, relative to the JSON file), Tags (array of objects). Tags objects have two keys: mandatory Tag
(array of strings – tag path) and optional Weight (defaults to 0). This example assigns two tags:
Artists/"Yuno Nagasaki" (with -1 weight) and Year/1990s/1999 (with 0 weight):

[
 {
 "File": "..\\music.mp3",
 "Tags": [
 {"Tag": ["Artists", "Yuno Nagasaki"], "Weight": -1},
 {"Tag": ["Year", "1990s", "1999"]}
]
 }
]

If duplicate File’s exist within the same JSON or multiple JSONs, their Tags are merged as if they
were specified in the same object.

The script below parses ID3v2 tags (found in audio and video files, notably used by iTunes) extracting
tags from artist, album, grouping, genre, BPM and comment fields (all comma-separated) into a JSON
file. Once it’s ran, you perform the usual import making sure to select the JSON file that the script has
produced as a “custom meta-data source”. If your files are already in Stagsi, you can import them again
in Append Tags mode to merge existing database tags with the extracted ones.

Note: even though the script supports all ID3v2 formats (2.x, 3.x, 4.x), the format itself is very old and
programs often use it in non-standard ways so it may fail to extract meta-data from some files,
Stagsi Cookbook / Import (46/94) 2/11/2024 (5c5cf14)

particularly from the ancient ones.

<?php
set_error_handler(function ($severity, $msg, $file, $line) {
 throw new ErrorException($msg, 0, $severity, $file, $line);
}, -1);

$meta = processDir('C:/music');
file_put_contents('c:/tags.json', json_encode($meta));

function nameInfo(array $frames) {
 $res = [];

 $idToTag = ['TCOM' => 'Artist', 'TALB' => 'Album', 'GRP1' =>
'Grouping',
 'COMM' => 'Comment'];

 foreach ($idToTag as $id => $tag) {
 if (!empty($frames[$id])) {
 foreach ($frames[$id] as $s) {
 foreach (preg_split('/\s*,\s*/u', $s) as $s) {
 $res[] = ['Tag' => [$tag, $s]];
 // This script assigns all tags the default weight of 0.
 // You can assign custom weight like so:
 //$res[] = ['Tag' => [$tag, $s], 'Weight' => 20];
 }
 }
 }
 }

 if (!empty($frames['TCON'])) {
 foreach ($frames['TCON'] as $s) {
 $res[] = ['Tag' => ['Genre', $s]];
 }
 }

 if (!empty($frames['TBPM'])) {
 foreach ($frames['TBPM'] as $s) {
 $res[] = ['Tag' => ['BPM', $s]];
 }
 }

 return $res;
}

function processDir($path) {
 $res = [];
 $path = rtrim($path, '\\/').'/';
 foreach (scandir($path) as $file) {
 $full = "$path/$file";
 if (is_file($full)) {
 try {
 $frames = parseFileID3v2($full);
 } catch (NoID3Tag $e) {
 echo "no ID3v2 tag, skipping", PHP_EOL;
 continue;
 } catch (\Throwable $e) {
 echo '!! ', $e->getMessage(), PHP_EOL;
 continue;
 }
 $tags = nameInfo($frames);
 $tags and $res[] = ['File' => $full, 'Tags' => $tags];

Import/ID3v2.php • Skip this example (#exYS) • Browse on GitHub • Adjustments (2)

Stagsi Cookbook / Import (47/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Import%252FID3v2.php

 } elseif (is_dir($full) and $file[0] !== '.') {
 $res = array_merge($res, processDir($full));
 }
 }
 return $res;
}

// https://id3.org/id3v2.4.0-structure
// https://id3.org/id3v2.4.0-frames
function parseFileID3v2($file) {
 echo "== ", preg_replace('![/\\\\]+!u', '\\', $file), " ==",
PHP_EOL;

 $f = fopen($file, 'rb');
 $header = unpack('a3magic/nversion/Cflags/Nlength', fread($f,
3+2+1+4));

 if ($header['magic'] !== 'ID3') {
 throw new NoID3Tag("No ID3v2 tag present.");
 } elseif ($header['version'] > 4<<8) {
 throw new Exception("Invalid ID3v2 tag version
($header[version]).");
 }

 assertNoFlags($header['flags'], 'tag');

 $header['length'] = unsynchInt($header['length']);
 echo "ID3v2 tag length: $header[length] bytes", PHP_EOL;

 $framesBuf = fread($f, $header['length']);
 fclose($f);

 if ($header['version'] < 3<<8) {
 $frames = splitID3v22Frames($framesBuf);
 } else {
 $frames = splitID3v2Frames($framesBuf);
 }

 echo "Found ", count($frames), " frames: ", join(' ',
array_map(function ($frame) { return "$frame[id]-
".strlen($frame['data']); }, $frames)), PHP_EOL;
 echo PHP_EOL;

 $usefulFrames = [];

 foreach ($frames as $frame) {
 // Frame types found in iTunes-tagged MP3s:
 //
 // -- 2.x --
 // COM - Comments; iTunes GUI: "comments"
 // TAL - Album/Movie/Show title; iTunes GUI: "album"
 // TBP - BPM (Beats Per Minute); iTunes GUI: "bpm"
 // TCO - Content type; iTunes GUI: "genre"
 // TP1 - Lead artist(s)/Lead performer(s)/Soloist(s)/Performing
group; iTunes GUI: "artist"
 // TP2 - Band/Orchestra/Accompaniment
 // TS2 - ???
 // TSA - ???
 // TT2 - Title/Songname/Content description; iTunes GUI: "song"
 // TYE - Year; iTunes GUI: "year"
 //
 // -- 3.x/4.x --
 // APIC - Attached picture
 // COMM - Comments; iTunes GUI: "comments"
 // GRP1 - ???; iTunes GUI: "grouping"

Stagsi Cookbook / Import (48/94) 2/11/2024 (5c5cf14)

 // MCDI - Music CD identifier
 // TALB - Album/Movie/Show title; iTunes GUI: "album"
 // TBPM - BPM (beats per minute); iTunes GUI: "bpm"
 // TCOM - Composer; iTunes GUI: "artist"
 // TCON - Content type; iTunes GUI: "genre"
 // TCOP - Copyright message
 // TENC - Encoded by
 // TIT2 - Title/songname/content description
 // TLEN - Length
 // TMED - Media type
 // TPE1 - Lead performer(s)/Soloist(s)
 // TPE2 - Band/orchestra/accompaniment
 // TPOS - Part of a set
 // TRCK - Track number/Position in set
 // TSSE - Software/Hardware and settings used for encoding
 // TXXX - User defined text information frame
 // TYER - ???
 // WXXX - User defined URL link frame
 $id2to34 = ['COM' => 'COMM', 'TAL' => 'TALB', 'TBP' => 'TBPM',
'TCO' => 'TCON', 'TP1' => 'TCOM'];
 switch ($id = $frame['id']) {
 // 2.x
 default:
 if (!isset($id2to34[$id])) { break; }
 $id = $id2to34[$id];
 // 3.x/4.x
 case 'COMM':
 case 'GRP1':
 case 'TALB':
 case 'TBPM':
 case 'TCOM':
 case 'TCON':
 //echo "> $frame[id]: ", bin2hex($frame['data']), PHP_EOL;
break;
 echo "> $frame[id] ($id): ";
 assertNoFlags($frame['flags'], 'frame');
 echo join('|', $strings = decodeStrings($frame['data']));
 echo PHP_EOL;
 foreach ($strings as &$ref) {
 $ref = preg_replace('/^\s*|\s*$/u', '', $ref);
 }
 $usefulFrames[$id] = $strings;
 break;
 }
 }

 return $usefulFrames;
}

// 2.x.
// https://id3.org/id3v2-00
function splitID3v22Frames($buf) {
 $frames = [];

 while (strlen($buf)) {
 if ($buf[0] === "\0") { break; } // padding.
 $header = unpack('a3id/C3length', substr($buf, 0, $hl = 3+3));
 $len = ($header['length1'] << 16) + ($header['length2'] << 8) +
$header['length3'];
 //$len = unsynchInt($len);
 if (strlen($buf) < $hl + $len) {
 throw new Exception("Not enough frame buffer.");
 }
 $frames[] = [
 'id' => $header['id'],

Stagsi Cookbook / Import (49/94) 2/11/2024 (5c5cf14)

 'flags' => null,
 'data' => substr($buf, $hl, $len),
];
 $buf = substr($buf, $hl + $len);
 }

 return $frames;
}

// 3.x and 4.x.
function splitID3v2Frames($buf) {
 $frames = [];

 while (strlen($buf)) {
 if ($buf[0] === "\0") { break; } // padding.
 $header = unpack('a4id/Nlength/nflags', substr($buf, 0, $hl =
4+4+2));
 // Contrary to the spec, frame size doesn't seem to be synchsafe
integer,
 // at least in tags produced by iTunes.
 //$len = unsynchInt($header['length']);
 $len = $header['length'];
 if (strlen($buf) < $hl + $len) {
 throw new Exception("Not enough frame buffer.");
 }
 $frames[] = [
 'id' => $header['id'],
 'flags' => $header['flags'],
 'data' => substr($buf, $hl, $len),
];
 $buf = substr($buf, $hl + $len);
 }

 return $frames;
}

function unsynchInt($n) {
 $octets = str_split(str_pad(decbin($n), 32, 0, STR_PAD_LEFT), 8);

 foreach ($octets as &$octet) {
 if ($octet[0]) {
 throw new Exception("Synchsafe integer ($n) expected to have
no 8th bits set ($octet).");
 }
 $octet = substr($octet, 1);
 }

 return bindec(join($octets));
}

function decodeStrings($s) {
 $res = [];

 while (strlen($s)) {
 list($string, $tail) = decodeString($s);
 $res[] = $string;
 $s = strlen($tail) ? $s[0].$tail : '';
 }

 return $res;
}

function decodeString($s) {
 switch ($s[0]) {
 case "\0":

Stagsi Cookbook / Import (50/94) 2/11/2024 (5c5cf14)

Multiple File Name Tags

Let’s suppose you have a large collection of files where their names (or parts thereof) are the actual
tags. For example: sunny sunshine girl landscape public_domain.jpg. It’s not quite
convenient to “parse” such a file name into individual tags using the regular technique (see the above
section) because the number of tags is unknown, and you’ll need to create 1 rule per every possible tag
with slightly different regexps.

Note that specifically for these reasons regexp rules allow changing the tag name delimiter, which
defaults to | (because it’s not a valid symbol in file names). To extract tags from our earlier example:

Set the expression to \\(.+?)\.\w+$ to extract the file name without extension.
Set the delimiter to a single space symbol (or to \s+).
Set the replacement string to \1.

As a result, first \1 is replaced with sunny sunshine girl landscape public_domain and
then the delimiter is applied, making that string a list of 5 tags.

 case "\3":
 $tail = strpos($s, "\0", 1);
 $tail === false and $tail = strlen($s);
 $string = substr($s, 1, $tail - 1);
 $s[0] === "\0" and $string = utf8_encode($string);
 return [$string, substr($s, $tail + 1)];
 case "\1":
 case "\2":
 // It seems NULL byte(s) (for all string encoding types) are
optional and only used if the data does
 // contain several strings, as a separator. For example, found
in COMM only.
 // However, instead of using explode() we still parse strings
one by one
 // because there must be some cases when NULLs are used as
terminator,
 // and then this function would be useful.
 $tail = strlen($s);
 for ($i = 1; isset($s[$i + 1]); $i += 2) {
 if ($s[$i] === "\0" and $s[$i + 1] === "\0") {
 $tail = $i;
 break;
 }
 }
 $enc = $s[0] === "\1" ? 'UTF-16' : 'UTF-16BE';
 return [iconv($enc, 'utf-8', substr($s, 1, $tail - 1)),
substr($s, $tail + 2)];
 default:
 throw new Exception("Unknown string encoding scheme
($s[0]).");
 }
}

function assertNoFlags($n, $type) {
 if ($n) {
 throw new Exception("ID3v2 $type flags not supported ($n).");
 }
}

class NoID3Tag extends Exception { }

Stagsi Cookbook / Import (51/94) 2/11/2024 (5c5cf14)

Repairing Corrupted

Sometimes database object files may go bad – power failure, linked files moved to another location, etc.
Stagsi integrity checks detect this situation and mark such objects with the special Corrupted system
tag.

If you have proper files somewhere, you can easily repair corrupted objects by importing them. When
Stagsi detects a file (object) already contained in the database, and that object is corrupted – it replaces
most of its properties (including link files and thumbnails) as if the file was imported anew, keeping
existing tag assignments.

Change Data Mode

Sometimes you might want to change object import mode after the actual import. For example, files
were wrongly imported as links while you wanted them to be stored, or vice versa.

If you want to convert all link-mode objects into “copy”, i.e. make a database fully independent of
external files, then just run the /unlink command-line command.

For other cases, or when you want to selectively “unlink” only specific objects, you can make them
“Corrupted” and then re-import with the desired mode (corrupted duplicate files are imported almost
as if they were not yet known, just their tags are preserved). One simple way to “corrupt” them is
removing their data files from the numbered folders (e.g. Database\1\1234.jpg or 1234 for a
link) and running /check.

Surprising Uses
Audio & Video Bookmarks

By utilizing custom file formats you can realize Stagsi in many ways it wasn’t meant for in the core –
for example, to tag parts of audio and video files. For this one can use M3U playlist files with extensions
specific to VLC (a popular media player also called VideoLAN).

M3U is a regular text file consisting of blocks, each block addressing a specific playlist entry, which most
often is just a file path, but can be preceded by comment lines (starting with #) which are often used to
add custom information like playback position. Example of such a block with VLC-specific playback
position (120 seconds, 2 minutes sharp):

#EXTVLCOPT:start-time=120
C:\Users\Elder\Desktop\Indie Game - The Movie.mp4

You can create such playlists by hand, via VLC’s interface (Save Playlist command, Ctrl+Y) or with
the following VLC extension written in Lua which saves a playlist file and a screenshot every time you
pause a video (e.g. with Space) so that in the end you can import all M3U files and add screenshots as
their custom thumbnails. When you Open (Enter) an M3U file from Stagsi, it launches VLC playback
exactly at that position.

-- To enable this extension, copy it to VLC's program folder, for

Import/VLC video bookmarks.lua • Skip this example (#exQL) • Browse on GitHub • Adjustments (5)

Stagsi Cookbook / Surprising Uses (52/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Import%252FVLC+video+bookmarks.lua

example:
-- C:\Program Files (x86)\VideoLAN\lua\extensions\
-- ...then (every time VLC starts) enable via the View menu.
--
-- Warning: io.open() doesn't work with UTF-8 but with system-
specific locale.
-- Yet VLC returns playing file path as UTF-8 and have no means to
convert them
-- to CP1251 (or other) but even if it had the conversion would not
be correct
-- for all strings. Therefore Paths with non-Latin symbols will be
mangled on
-- save and all modes will behave as OVERWRITE (this includes video
file names
-- and ..._path options).

local MY_NAME = 'Stagsi Playlist Maker'

local NONE = 0
local ADD_NEW = 1
local APPEND = 2
local OVERWRITE = 3

-- After changing options either restart VLC or go to Tools >
-- Plugins and extensions, Active Extensions tab and hit Reload
extensions,
-- then re-enable it via the View menu.
local options = {
 -- Leave empty to use the video's directory. In any case, the file
is prefixed
 -- by the video's base name (without extension) plus a unique
numerical suffix.
 playlist_path = '',
 -- Warning: make sure to double backslashes!
 --playlist_path = 'C:\\Stuff\\Save_here',

 -- Like above but for video screenshots.
 snapshot_path = '',

 -- NONE doesn't write playlist files.
 --
 -- ADD_NEW creates new M3U file.
 --
 -- APPEND adds new lines to the first (existing) M3U file (if no
file exists,
 -- it's created as with ADD_NEW). This allows multiple bookmarks
per one
 -- playlist, which can be viewed and navigated in VLC's View >
Playlist
 -- (Ctrl+L) menu.
 --
 -- OVERWRITE wipes the file if it exists, replacing by the current
(last)
 -- position.
 playlist_mode = ADD_NEW,

 -- Similar as above but not APPEND (works like ADD_NEW).
 snapshot_mode = OVERWRITE,

 -- Allowed VLC values - png, jpg, tiff.
 snapshot_format = 'png',
}

function descriptor()
 return {

Stagsi Cookbook / Surprising Uses (53/94) 2/11/2024 (5c5cf14)

 title = MY_NAME,
 version = '1.0',
 license = 'CC0',
 author = 'Soletude',
 description = [[
Whenever a video is paused (often with Space hotkey), saves an M3U
playlist (with current playback position) and/or current video
snapshot for later import into Stagsi.

Open this script in a text editor to configure.
]],
 url = 'https://stagsi.com',
 capabilities = {'playing-listener', 'input-listener'},
 }
end

-- Without these two VLC won't recognize the extension.
function activate()
end

function deactivate()
end

-- From lua\modules\common.lua.
local function snapshot()
 local vout = vlc.object.vout()
 if vout then
 -- Saves image to the location and in format specified in VLC
preferences.
 vlc.var.set(vout, 'video-snapshot', nil)
 end
end

-- C:\foo\bar.txt -> C:\foo\
local function split_path(path)
 return path:gsub('[^\\/]+$', ''), path:match('[^\\/]+$')
end

-- path - without format (extension). A prefix will be added by vlc.
-- format - without '.'.
local function snapshot_to(path, format)
 local old = {
 path = vlc.config.get('snapshot-path'),
 prefix = vlc.config.get('snapshot-prefix'),
 format = vlc.config.get('snapshot-format'),
 seq = vlc.config.get('snapshot-sequential'),
 }
 local dir, file = split_path(path)
 -- VLC fails if a path has trailing \, but it also fails if it's a
drive's
 -- root without \. So either C:\... or C:\ but not C:\...\ or C:.
 dir = dir:gsub('[\\/]*$', '')
 if not dir:find('[\\/]') then dir = dir..'\\' end
 vlc.config.set('snapshot-path', dir)
 vlc.config.set('snapshot-prefix', file)
 vlc.config.set('snapshot-format', format)
 -- vlcsnap-00001.png.
 vlc.config.set('snapshot-sequential', true)
 pcall(snapshot)
 vlc.config.set('snapshot-path', old.path or '')
 vlc.config.set('snapshot-prefix', old.prefix or '')
 vlc.config.set('snapshot-format', old.format or '')
 vlc.config.set('snapshot-sequential', old.seq or false)
end

Stagsi Cookbook / Surprising Uses (54/94) 2/11/2024 (5c5cf14)

local function last_file(base, suffix)
 local function exists(file)
 local f = io.open(file)
 return f and (f:close() or true)
 end
 -- VLC's snapshot suffixes are incremental and don't reset to 1
for new
 -- videos. So we see what's the last suffix that exists.
 for i = 1000, 1, -1 do
 local file = ('%s%05d%s'):format(base, i, suffix)
 vlc.msg.dbg(('%s: last_file(%s)'):format(MY_NAME, file))
 if exists(file) then
 return i
 end
 end
end

local function handle_hotkey()
 vlc.msg.info(('%s: handling hotkey'):format(MY_NAME))

 -- file:///C:/%20...
 local video_uri = vlc.input.item():uri()
 local video_file = vlc.strings.decode_uri(video_uri)
 :gsub('^[^/]*/*', '')
 :gsub('/', '\\')

 local video_dir, video_file = split_path(video_file)
 local video_base = video_file:gsub('%.[^.]+$', '')

 vlc.msg.dbg(('%s: video dir %s, file %s, base %s'):format(MY_NAME,
 video_dir, video_file, video_base))

 if options.playlist_mode ~= NONE then
 local base = options.playlist_path:gsub('[\\/]*$', '')
 base = (base == '' and video_dir or base..'\\')..video_base..'-'
 local suffix = last_file(base, '.m3u')
 vlc.msg.dbg(('%s: playlist base %s, suffix %s'):format(MY_NAME,
base, suffix or ''))
 if options.playlist_mode == OVERWRITE then
 if suffix then
 os.remove(('%s%05d.m3u'):format(base, suffix))
 end
 elseif options.playlist_mode == ADD_NEW and suffix then
 suffix = suffix + 1
 end
 -- Convert microseconds to seconds.
 local play_time = vlc.var.get(vlc.object.input(), 'time') /
1000000
 local file = ('%s%05d.m3u'):format(base, suffix or 1)
 local block = '#EXTVLCOPT:start-time=%d\n'..
 '%s\n'..
 '\n'
 block = block:format(play_time, video_uri)
 local f = io.open(file, options.playlist_mode == APPEND and 'a'
or 'w')
 f:write(block)
 f:close()
 end

 if options.snapshot_mode ~= NONE then
 local base = options.snapshot_path:gsub('[\\/]*$', '')
 base = (base == '' and video_dir or base..'\\')..video_base..'-'
 local suffix = last_file(base, '.'..options.snapshot_format)
 vlc.msg.dbg(('%s: snapshot base %s, suffix %s'):format(MY_NAME,
base, suffix or ''))

Stagsi Cookbook / Surprising Uses (55/94) 2/11/2024 (5c5cf14)

Web Bookmark Manager

If you’re the kind of person that keeps hundreds of bookmarks in Chrome or Firefox, it’s likely you are
not happy with the way modern browsers manage them – by folders. As such, they have all the
limitations of regular file systems vs. tags.

Stagsi may be your key to the kingdom. Much like regular Windows file shortcuts (.lnk), there is a
format for “Internet shortcuts” (.url). In your browser’s address bar, try dragging the website’s icon
and dropping it in a Windows Explorer window – a shortcut will be created, that when launched brings
you to the target web page.

And since it’s a file, it can be imported into Stagsi.

Moreover, the format is text-based and can be easily generated. Here’s a PHP script that creates .url
files from Chrome’s bookmark export (in HTML format) with proper file names (becoming object title in
Stagsi):

 if options.snapshot_mode == OVERWRITE then
 if suffix then
 os.remove(('%s%05d.%s'):format(base, suffix,
options.snapshot_format))
 end
 elseif suffix then
 suffix = suffix + 1
 end
 snapshot_to(base, options.snapshot_format)
 end
end

function playing_changed()
 if vlc.playlist.status() == 'paused' then
 local ok, msg = pcall(handle_hotkey)
 if not ok then
 vlc.msg.err(('%s: error: %s'):format(MY_NAME, msg))
 end
 end
end

<?php
$file = 'bookmarks_1_2_20.html';
$path = 'output/';

is_dir($path) or mkdir($path, 0777, true);

preg_match_all('/<DT>]*>([^<]+)/ui',
 file_get_contents($file), $matches, PREG_SET_ORDER);

foreach ($matches as $match) {
 list(, $url, $title) = $match;
 $title = preg_replace('/[^\pL\pN]+/u', ' ', $title);
 $title = preg_replace('/^\s*|\s*$/u', '', $title);
 $file = rtrim($path, '\\/')."/$title.url";
 file_put_contents($file, "[InternetShortcut]\r\nURL=$url");
}

Import/Chrome bookmarks.php • Skip this example (#exOV) • Browse on GitHub • Adjustments (2)

Stagsi Cookbook / Surprising Uses (56/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Import%252FChrome+bookmarks.php

Supplimenting Regular Folders

Thanks to the linked import mode, you don’t have to move all the files into Stagsi if you are happy with
the traditional file & folder structure but would only like to enhance it with tags without being forced to
use Stagsi alone (whose Object Browser is inherently flat, at least for now).

You can create a database in a special subfolder (say _Stagsi) in the root folder of your data, import
your files in linked mode and make the links relative (see RelativeLinks). Now, when you “launch” an
object from Stagsi, it gets redirected to the file 1 level above (and outside) the database – with your files
being in their original folders which you can browse as usual with Windows Explorer (or maybe with
Total Commander?).

Given that Stagsi is easily Portable and small, you can even copy the entire program into that subfolder
and carry it along with your data. To give an idea of the final folder layout:

Photos\Family\2019\DCIM4869.jpg - main data which is being
"enhanced"
Photos\Stagsi.lnk - a shortcut for quickly
launching Stagsi
Photos_Stagsi\Stagsi.exe - Stagsi program files
Photos_Stagsi\Database\Stagsi.sqlite - Stagsi database files

Using Windows Shortcuts

With Stagsi, a power user must always think beyond what’s obvious to open new horizons in organizing
one’s materials. When “unknown formats” setting is enabled, Stagsi accepts not only images but any
kind of files – including Windows Shortcuts (.lnk files). The benefits of this:

You can tag folders! “Opening” a shortcut object (from Stagsi) is equivalent to opening the
targeted file, in this case a folder; if it doesn’t work for you, then add explorer.exe to the list of type
associations for .lnk files (such entry will appear once you import your first shortcut).
Stagsi is primarily meant for organizing static data, i.e. one that doesn’t (often) change. Dynamic
content (documents, source code, work-in-progress images, etc.) will constantly fail the integrity
checks. One way to work around this is to disable the checks entirely but it’s like throwing away a
fire extinguisher because it doesn’t match the decor. Another is to use per-object attachments but
they cannot be tagged and searched. A smarter way if you need all the features except integrity
checks is to use shortcuts. Shortcuts themselves remain mostly static unless you move target files
around, in which case the path inside the .lnk file needs to be changed, changing the file’s hash.
Files they point to are exempt from integrity checks, without disabling the checks for the entire
database.

Shortcuts are easy to create en-masse in Windows Explorer: select all the files you want to be
“shortcutted” and Copy them (Ctrl+C), then right-click on some temporary folder and select Paste
shortcut. Or drag & drop the files while holding right mouse button (not left) to a temporary folder – on
mouse button release, you will get a menu with Create shortcuts here command.

Once you have shortcuts, import them in “copy” or “move” mode instead of “linked” to store them
within the database folder, avoiding the clutter in your regular directories (like Desktop or My
Documents).

Stagsi Cookbook / Surprising Uses (57/94) 2/11/2024 (5c5cf14)

Another Way To Tag Folders

If you want to avoid using shortcuts, you can link directly to folders – the only problem is that Stagsi’s
import dialog is not currently suited for importing folders.

You can work around this by creating a special file in each folder (e.g. FolderMarker.txt),
importing those files in linked mode, closing Stagsi and doing a Find & Replace on the database folder,
replacing \FolderMarker.txt with a blank string. As a result, C:\Folder\FolderMarker.txt
becomes C:\Folder and “opening” it from Stagsi opens a new Windows Explorer window directly.

Using Batch and Other Script Files

With a bit of non-standard thinking, Stagsi can be turned into a “mission control”-type program,
suitable for managing thousands of commands, each identified by an evolved tag hierarchy.

Let’s imagine you have 100 of PCs that you need to maintain in some way. Each PC may have a set of
batch files to perform tasks such as “reboot”, “install updates”, “make screenshot”, etc. Each batch file
may have at least two tags: the PC’s name (under “PCs” root tag) and task name (under “Tasks” root
tag). Whenever you want to “install updates” to a particular PC, you search for “PC/Marys” or to
“Tasks/Update”, or even to “PC/Marys Tasks/Update” if you have a lot of PCs and tasks. Select your
batch file in the list and run it with Enter (a hotkey to the Open command).

Multiple commands can be ran the same way – with Enter , but if you want more control, then you
can export them to a temporary folder (by dragging thumbnails from Stagsi to Windows Explorer or
using Ctrl+S – Export command).

Remember: Stagsi has its own type associations (per database), which default to the system ones but
can be change separately. This way, if outside of Stagsi your .ps1 files are associated with VS Code for
faster editing, within Stagsi you can associate them with the PowerShell interpreter directly for instant
run (you can still edit the file within using the Show in Explorer command, Alt+Enter).

You can even create new associations that do not exist outside of Stagsi. Say, if you’re a heavy nircmd
user then you can write your scripts with .nir extension and associate it to nircmd.exe script within
Stagsi, without affecting global Windows associations. If you put nircmd.exe in the database folder, then
such association becomes portable and will work on any system where Stagsi can be ran.

Command-Line
Basic Stagsi command-line syntax is:

Stagsi.exe [/ro] [/multi] [/sql [log.sql]] [[data-path] [/op...]]

By default, Stagsi launches in read/write, single instance mode, with data-path read from DataPath
key in Bootstrap.json in the program’s folder (which defaults to
%APPDATA%\Soletude\Stagsi\Database).

Arguments after data-path are operation-specific arguments, where the first (/op) is the operation’s
identifier.

Some operations (/search, /hash, /tags, /import) are “combining”, i.e. when called without
Stagsi Cookbook / Command-Line (58/94) 2/11/2024 (5c5cf14)

/multi and the same database (data-path) is already opened in Stagsi, that process is signaled to
perform that action (e.g. open the Import dialog). Non-combining operations like /rethumb only
activate the running process.

Read-Only

Sometimes you want to browse the database without making any changes. The /ro switch enables
read-only mode, protecting against accidental modifications. Other consequences of this mode:

/multi is enabled because to enforce single-instance mode, a lock file needs to be created in
data-path (making this mode no more “read-only”).
Searches may run slightly slower because search caching (compiled assemblies in
DataPath\Temp) is disabled.

/ro is enabled automatically if the database file is not writeable (tested on launch). This allows running
Stagsi from CD-ROM, network shares, etc.

Multi-Instance Mode

By default, if there is a Stagsi process running on a given database (data-path), attempt to run
another process on the same database will fail, bringing the already running one to the foreground.
Generally, this is what you want – keep Stagsi running in background (to preserve its caches).

By passing /multi you disable the single-instance check. However, do not run multiple processes that
perform modifications – Stagsi reads most data into the memory on launch and doesn’t refresh it; when
two processes change data, they may create inconsistencies. Because of this, all but one process must
be ran as /ro (read-only), or at least ensure that they do not perform conflicting actions (there’s no
definite list of such actions though).

Internally, when a process tries to open a database (with or without /multi), it creates a mutex and a
lock file (DataPath\Lock). The lock file holds the ID (PID) of the first process that has opened this
database. If the mutex could not be created, the process exits unless /multi was given. If the database
wasn’t open before, then /multi has no effect and the mutex and lock file are created anyway.

SQL Log

If /sql is given, Stagsi writes all executed non-SELECT SQL statements to a text file. If there is a file
argument after /sql (must not begin with / or be empty "") then that file is appended to, else a
unique .sql file is created directly under DataPath.

The text file contains valid SQL instructions (alike to a database dump) and can be “applied” to an older
Stagsi.sqlite database using any tool – SQLite. /sql can be used as a log journal for manual
review of the database changes, as a differential backup or as a “patch” for a database on another
machine (e.g. in a basic master-slave setup).

Data-Path

If this argument is missing, it’s set according to DataPath key in Bootstrap.json in the program’s
folder.

If it’s given, it may be one of the following (can be conveniently used with drag & drop of a file or folder
Stagsi Cookbook / Command-Line (59/94) 2/11/2024 (5c5cf14)

in Windows Explorer onto Stagsi’s icon):

Path to Stagsi.sqlite file.
Path to an existing directory. Assumed to be a database, with missing files (Stagsi.sqlite,
Settings.json and others) created automatically.
A non-existing path. Assumed to be a path to a database directory; non-existing components are
created as directories. For example: E:\Data\Stagsi – if it doesn’t exist, Data directory is
created, Stagsi inside it, then Stagsi.sqlite and others are created inside Stagsi.

/search

This command opens a new tab with the given search query. Apostrophes ' are replaced by quotes " to
help working around weird Windows command-line quoting quirks.

This command can be used to facilitate a more specialized search in a separate program and send
found results back to Stagsi in the form of “ID” search query: /22 /34 /123 /201 ... (QueryId). If
Stagsi is already running, normally this would activate it and search, otherwise it will be started and
search triggered.

The sample repository contains a C# + WinForms program using the official SQLite bindings to provide
an “extended” search dialog which filters by most Objects table fields such as file size and hash.
WinForms is used because it provides advanced text controls (spinners and data pickers) out of the box,
but it’s fairly easy to rewrite the sample using WPF or UWP.

If you want to close all tabs first, you can taskkill Stagsi, delete Queries.json (this is where tab
state is stored) and then run the /search commands.

/nmh

Google Chrome allows its addons to communicate with programs via a “native messaging host”
protocol. By default Stagsi is coming with NMH.exe which implements it, reading messages and writing
responses in an infinite loop that can be broken with Ctrl+C or Ctrl+Z (EOF).

See Chrome’s documentation for details: developer.chrome.com/extensions/nativeMe….

The included NMH.exe lets you do this:

Spawn a new Stagsi process by combining arguments of NMH.exe with the request’s args
array. For example: NMH.exe /ro will always spawn processes in read-only mode. Some
Chrome-specific arguments (like chrome-extension://) are ignored.
Save files to the database’s Temp (DataTemp) folder, since doing that using WebExtension API is
just too hard. Files get random unique names plus extensions that you specify.

Request object keys: do (required, one of spawn or save). For spawn, also these: args (required, an
array of strings, starting from /op), wait (optional, if the response should be delayed until the process
exits). For save: ext (required, new file’s extension), data (base64-encoded string).

Response object keys: error (boolean or string if have detailed error info). For spawn, also these:
code (integer, exit code, only if wait and no error), clipboard (textual clipboard contents, only if
wait and no error; useful for /pick). For save: file (absolute file path).

Stagsi Cookbook / Command-Line (60/94) 2/11/2024 (5c5cf14)

https://developer.chrome.com/extensions/nativeMessaging

Below is a simple Google Chrome add-on that runs the search in Stagsi from the omnibox with “stg”
prefix (example: “stg landscape | nature” runs Stagsi.exe /search "landscape | nature"),
as well as from the toolbar button, using current page’s selection.

First, we need to generate a private/public key pair for this add-on because the add-on’s ID need
to be known in order to be used within NMH. One simple way of doing this is creating an empty
add-on (manifest below), going to Extensions, Pack extension, then dragging and dropping the
created .crx file into the Extensions tab, going to
%APPDATA%\Local\Google\Chrome\User Data\Default\Extensions, locating
your just installed add-on there and copying the public part from its manifest.json (the
private part was saved by the Pack command earlier).

{
 "name": "Empty add-on",
 "version": "1.0",
 "manifest_version": 2
}

Create a Native Messaging Host manifest from this template saved in C:\Stagsi-
addon\nmh.json:

Note: path doesn’t allow arguments so if you want to pass them you have to create and register
a “proxy” shortcut (.lnk only, .bat doesn’t work) that calls "C:\Stagsi\NMH.exe" /ro
"C:\My DB"

Register the NMH manifest, in the current user’s registry section (or in HKLM for all users):

reg add
HKCU\Software\Google\Chrome\NativeMessagingHosts\ca.soletude.stagsi.
addon /ve /d "C:\Stagsi-addon\nmh.json" /f

Create a manifest for our add-on:

{
 "name": "ca.soletude.stagsi.my-addon",
 "description": "Stagsi NMH for My Addon",
 "path": "C:\\Program Files\\Stagsi\\NMH.exe",
 "type": "stdio",
 "allowed_origins": [
 "chrome-extension://diikokbialbifgbobhohkjgaelcohcbo/"
]
}

NMH/nmh-manifest.json • Skip this example (#exOA) • Browse on GitHub • Adjustments (4)

{
 "name": "My Search in Stagsi",
 "version": "1.0",
 "manifest_version": 2,
 "description": "Runs Stagsi /search from page selection and
omnibox.",

NMH/addon-manifest.json • Skip this example (#exPB) • Browse on GitHub • Adjustments (6)

Stagsi Cookbook / Command-Line (61/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/NMH%252Fnmh-manifest.json
https://go.soletude.ca/stagsi/ex-code/NMH%252Faddon-manifest.json

Finally, write the scripts. The add-on is split into two parts: a background service worker (handles
the omnibox) and a content script (retrieves selection from the active tab).

 "omnibox": {"keyword": "stg"},
 "background": {
 "scripts": ["background.js"],
 "persistent": false
 },
 "browser_action": {},
 "content_scripts": [
 {
 "matches": ["<all_urls>"],
 "js": ["content.js"],
 "run_at": "document_start",
 "all_frames": true
 }
],
 "icons": {
 "16": "icon16.png"
 },
 "permissions": [
 "nativeMessaging"
],
 // In this example we assume diikokbialbifgbobhohkjgaelcohcbo
ID.
 "key": "..."
}

function exec(args) {
 chrome.runtime.sendNativeMessage(
 'ca.soletude.stagsi.my-addon',
 {do: "spawn", args},
 function (resp) {
 if (chrome.runtime.lastError || !resp || resp.error) {
 alert('Unable to contact Stagsi: ' +
chrome.runtime.lastError)
 }
 }
)
}

chrome.browserAction.onClicked.addListener(function () {
 chrome.tabs.query(
 {
 active: true,
 windowId: chrome.windows.WINDOW_ID_CURRENT
 },
 function (tab) {
 chrome.tabs.sendMessage(tab[0].id, {}, function (resp) {
 var args = resp ? ['/search', resp] : []
 exec({args})
 })
 }
)
})

chrome.omnibox.onInputEntered.addListener(function (text) {
 exec({args: ['/search', text]})
})

NMH/background.js • Skip this example (#exFH) • Browse on GitHub • Adjustments (1)

Stagsi Cookbook / Command-Line (62/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/NMH%252Fbackground.js

Troubleshooting

Use the below C version to see if the NMH program is launched, that it receives expected messages and
your addon fetches its responses. This rules out various manifest-related errors.

If Chrome reports that Specified native messaging host not found then the manifest
file is not registered (in the Registry) or that it’s referencing a non-existing program (path). If it says
Error when communicating with the native messaging host then the host exists but
it can’t be ran (e.g. it’s a .bat file, not .exe or .lnk) or that its response is empty (EOF) or bad (e.g.
invalid length DWORD).

C Implementation

Google Chrome is quite peculiar about the nature of the host and doesn’t seem to call any script files
(.bat, .php, etc.). For debug purposes you can use this small C/C++ program to log all input to a text
file and to stdout so your addon should receive exactly what it has sent:

Here’s a compiled version (2 KiB): github.com/Soletude/Stagsi-Coo….

/hash

This command allows locating one or more files in a database. For example, to add a new command to

chrome.extension.onMessage.addListener(function (req, sender,
send) {
 send(window.getSelection().toString())
})

NMH/content.js • Skip this example (#exRD) • Browse on GitHub

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>

int main(void) {
 FILE *debug = fopen("nmh.log", "w");
 fprintf(debug, "CL: %s\n", GetCommandLine());
 setbuf(debug, NULL);
 setbuf(stdin, NULL);
 setbuf(stdout, NULL);
 while (1) {
 DWORD len;
 if (fread(&len, 1, 4, stdin) != 4) { return 1; }
 fprintf(debug, "in: %u\n", len);
 char *buf = (char*) malloc(len + 1);
 if (fread(buf, 1, len, stdin) != len) { return 2; }
 buf[len] = 0;
 fprintf(debug, " %s\n", buf);
 fwrite(&len, 1, 4, stdout);
 fwrite(buf, 1, len, stdout);
 }
}

NMH/nmh-stub.c • Skip this example (#exMA) • Browse on GitHub • Adjustments (1)

Stagsi Cookbook / Command-Line (63/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/NMH%252Fcontent.js
https://go.soletude.ca/stagsi/ex-code/NMH%252Fnmh-stub.c
https://github.com/Soletude/Stagsi-Cookbook/NMH/nmh-stub.exe

Windows Explorer’s context menu that displays the selected file in Stagsi (if it’s part of the database)
import this .reg file:

If you’d rather have it under the Send To menu then add a shortcut (.lnk) to
%USERPROFILE%\SendTo folder, which on Windows 10 resolves to
C:\Users\your_user_name\AppData\Roaming\Microsoft\Windows\SendTo. Using
nircmd:

nircmd shortcut "Stagsi.exe" ~$sys.userprofile$\SendTo "Find in
Stagsi" /hash

Let’s say you’re using Stagsi as a “cataloguing” replacement for WinAMP – you use the latter to play
media files but you queue and manage them using Stagsi using a Tools script like so:

If you want to change tags (e.g. rating) of the currently playing track, use WinAMP’s Explore item(s)
folder (Ctrl+F in Playlist Editor) to locate its file and then use Explorer’s Find in Stagsi command set
up above to select it in Stagsi.

/import

This command displays the Import dialog with last import settings and file list read from the command-
line (recursively adding files from directories).

Let’s imagine you are a NES addict and you play games in FCEUX (an open source NES emulator).
FCEUX supports scripting in Lua language. Here’s how you can bind the Z key for taking screenshot
and pushing it to Stagsi in one keystroke:

Windows Registry Editor Version 5.00
[HKEY_CURRENT_USER\SOFTWARE\Classes*\shell\Find in Stagsi\command]
@="\"C:\\Program Files (x86)\\Stagsi\\Stagsi.exe\" /hash \"%1\""

Misc/Find in Stagsi.reg • Skip this example (#exJN) • Browse on GitHub • Adjustments (1)

<?php
$data = json_decode(strstr(file_get_contents(getenv('SELECTION')),
'{'));
$cl = ['C:/Program Files/winamp/winamp.exe'];
foreach ($data->Objects as $object) {
 $cl[] = $object->FilePath;
}
system(join(' ', array_map('escapeshellarg', $cl)));

Tools/Selection to &WinAMP.php • Skip this example (#exTU) • Browse on GitHub • Adjustments (1)

local temp = os.getenv('TEMP')..'\\stagsi-fceux'
local last = 0

while true do
 if input.get().Z and os.difftime(os.time(), last) >= 1 then
 gui.savescreenshotas(temp)
 emu.frameadvance()

Import/FCEUX screenshots.lua • Skip this example (#exLJ) • Browse on GitHub • Adjustments (3)

Stagsi Cookbook / Command-Line (64/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Misc%252FFind+in+Stagsi.reg
https://go.soletude.ca/stagsi/ex-code/Tools%252FSelection+to+%2526WinAMP.php
https://go.soletude.ca/stagsi/ex-code/Import%252FFCEUX+screenshots.lua

/pick

This command provides a very simple interface for using Stagsi as a kind of “open file” dialog.

With /search you can open a new tab (as in the /op of /search).

With /force you can add hidden criteria using the same query syntax (/force is ignored on error).
Using this option alone is useful to limiting a Stagsi instance to a specific subset of tags.

With /count you can specify how many results you require to be returned (min defaults to 1, max – to
“infinity”).

Stagsi exits with code 0 if user has picked object(s) meeting these criteria (/force and /count) – in
this case clipboard is changed as if the Copy command was used allowing the caller to retrieve picked
files’ paths, description as a JSON or first valid image’s data.

Below is a simple C program (can be compiled with MSVS or gcc under cygwin) that asks Stagsi for a
wallpaper image and then sets it to all displays obtaining its path from Windows Explorer’s list of
“pasted” files:

 os.execute('"C:\\Program Files\\Stagsi\\Stagsi.exe" /import
'..temp..'')
 os.remove(temp)
 last = os.time()
 else
 emu.frameadvance()
 end
end

#include <stdio.h>
#include <windows.h>

int main(int argc, char** argv) {
 // Attention: CreateProcessW (even if it's not used in this
example)
 // requires lpCommandLine to be writeable.
 char cl[MAX_PATH];
 snprintf(cl, MAX_PATH,
 "\"%s\" /pick /search \"%s\" /force \"%s\" /count 1 1",
 "C:\\Program Files\\Stagsi\\Stagsi.exe",
 "Wallpapers",
 "(PNG | JPG | GIF | BMP)");

 STARTUPINFO si = {0};
 PROCESS_INFORMATION pi = {0};
 BOOL processOK = CreateProcess(NULL, cl, NULL, NULL, FALSE, 0,
NULL, NULL, &si, &pi);
 WaitForSingleObject(pi.hProcess, INFINITE);

 DWORD code;
 if (!GetExitCodeProcess(pi.hProcess, &code)) {
 code = (DWORD) -1;
 }

 if (code == 0) {
 // Successfully picked an image.
 OpenClipboard(NULL);

Misc/Pick wallpaper.c • Skip this example (#exPO) • Browse on GitHub • Adjustments (2)

Stagsi Cookbook / Command-Line (65/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Misc%252FPick+wallpaper.c

Maintenance

There are a number of service operations that you normally don’t need to call in a default setting.

/op/op Meaning Affected
system tag When to call

/check/check
Calculate hashes for object data on disk and
compare with ones in the database. Corrupted

When you have
disabled
BackgroundChecks

setting and/or want to
manually trigger the
integrity check.

/rehash/rehash

Abandons object data hashes (and file sizes) from
the database in favour of existing data on disk.
Hashes are preserved for objects with a missing or
a zero-sized data file, and for ones whose new
hash is already contained in the database (i.e.
another object has the same hash).

Corrupted

When object data in
Data path (or linked
target files) was
changed and you are
sure the new state
should be perceived as
valid from now on.

/rerand/rerand
Randomize all database objects, effectively
changing the Random field. None

When you want the
Order by Random sort
mode to generate new
order.

/rethumb/rethumb
Regenerates thumbnails according to the current
state of the database and files.

Custom

Thumbnail

When manual changes
were made to
Thumb... fields in
the database or to t, u,
c-prefixed files in the
Data path.

 HANDLE drop = GetClipboardData(CF_HDROP);
 wchar_t fn[MAX_PATH];

 if (drop != NULL && DragQueryFileW(drop, 0, fn, MAX_PATH - 1)) {
 BOOL wallpaperOK = SystemParametersInfoW(SPI_SETDESKWALLPAPER,
0, fn,
 SPIF_UPDATEINIFILE | SPIF_SENDCHANGE);
 if (wallpaperOK) {
 CloseClipboard();
 return 0;
 }
 }

 CloseClipboard();
 }

 return 1;
}

Stagsi Cookbook / Command-Line (66/94) 2/11/2024 (5c5cf14)

/unlink/unlink
Replace all objects in linked mode with non-linked
mode, copying targeted file data into the database. None

When you want a
database to become
self-contained, not
relying on external
data files.

System Scheduler

You can schedule running maintenance tasks with the standard Task Scheduler of Windows. It’s a
powerful tool with a friendly GUI.

Below is a sample .xml task configuration (using the GUI or the command-line) that runs /dbcheck,
/rerand and /check every 3 days at night (2 AM) – longer-running commands last so as not to
cause others to be never ran since they have less chances of finishing.

The configuration can be imported via the GUI or by this command, and it will process the database of
the importing user:

schtasks /create /xml "stagsi.xml" /tn "Stagsi Maintenance"

Partial /rehash

<?xml version="1.0" encoding="UTF-16"?>
<Task version="1.2"
xmlns="http://schemas.microsoft.com/windows/2004/02/mit/task">
 <Triggers>
 <CalendarTrigger>
 <StartBoundary>2019-01-01T02:00:00</StartBoundary>
 <Enabled>true</Enabled>
 <ScheduleByDay>
 <DaysInterval>3</DaysInterval>
 </ScheduleByDay>
 </CalendarTrigger>
 </Triggers>
 <Settings>
 <WakeToRun>true</WakeToRun>
 </Settings>
 <Actions Context="Author">
 <Exec>
 <Command>"C:\Program Files\Stagsi\Stagsi.exe"</Command>
 <Arguments>/dbcheck</Arguments>
 </Exec>
 <Exec>
 <Command>"C:\Program Files\Stagsi\Stagsi.exe"</Command>
 <Arguments>/rerand</Arguments>
 </Exec>
 <Exec>
 <Command>"C:\Program Files\Stagsi\Stagsi.exe"</Command>
 <Arguments>/check</Arguments>
 </Exec>
 </Actions>
</Task>

Misc/Maintenance scheduler.xml • Skip this example (#exUB) • Browse on GitHub • Adjustments (5)

Stagsi Cookbook / Command-Line (67/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Misc%252FMaintenance+scheduler.xml

As of now maintenance commands always process the entire database and cannot be limited to
processing specific objects only. If your database is large and its files change often (maybe because you
have imported WindowsLNK), you might be in need of updating hashes of selected objects only.

This script accepts the list of objects’ RowId’s (conveniently obtained using the Property panel’s RowId
input’s Copy button) and updates their hashes:

<?php
set_error_handler(function ($severity, $msg, $file, $line) {
 throw new ErrorException($msg, 0, $severity, $file, $line);
}, -1);

$self = array_shift($argv);
$dbPath = array_shift($argv);
$ids = $argv;

if (!is_file($dbPath) or !$ids) {
 echo "Usage: php ", basename($self), " stagsi.sqlite id [id id
...]", PHP_EOL;
 exit(1);
}

chdir(dirname($dbPath));
$settings = json_decode(file_get_contents('Settings.json'));
$db = new PDO("sqlite:$dbPath");
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$getStmt = $db->prepare("SELECT * FROM Objects WHERE rowid = ?");
$setStmt = $db->prepare("UPDATE Objects SET Hash = ? WHERE rowid =
?");

foreach ($ids as $id) {
 $id = (int) $id;

 $getStmt->bindValue(1, $id);
 $getStmt->execute();
 $row = $getStmt->fetchObject();

 if (!$row) {
 echo "$id: no such row", PHP_EOL;
 continue;
 }

 $base = floor($id / $settings->FolderSize)."/$id";
 $file = is_file($base) ? file_get_contents($base) : "$base.$row-
>Format";

 if (!is_file($file)) {
 echo "$id: no data file: $file", PHP_EOL;
 continue;
 }

 $setStmt->bindValue(1, $hash = md5_file($file));
 $setStmt->bindValue(2, $id);
 $setStmt->execute();

 echo $hash === $row->Hash ? "$id: unchanged" : "$id: updated",
PHP_EOL;
}

Database/rehash.php • Skip this example (#exXU) • Browse on GitHub

Stagsi Cookbook / Command-Line (68/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Database%252Frehash.php

The following alternative version does the same but is called from the Tools menu and updates hashes
of the objects selected in Object Browser (Stagsi is closed and reopened on completion). The script’s file
name must start with Selection.

Note: these scripts do not remove the Corrupted system tag. To do so, view “corrupted” object(s) in
Stagsi and it will soon correct the state of this tag in background according to the new hash.

Other Partial Commands

We have PartialRehash a few useful scripts for performing partial /rehash. For other commands, you
can either roll your own script or use this trick:

Close Stagsi.
Open your database’s folder.

<?php
set_error_handler(function ($severity, $msg, $file, $line) {
 throw new ErrorException($msg, 0, $severity, $file, $line);
}, -1);

$selection =
json_decode(strstr(file_get_contents(getenv('selection')), '{'));
system('taskkill /pid '.escapeshellarg(getenv('pid')));

for ($i = 0; $i < 50; ++$i) {
 $line = system('tasklist /fi "pid eq
'.escapeshellarg(getenv('pid')).'" /fo csv');
 if (strpos($line, '","') === false) {
 $i = -1;
 break;
 }
 usleep(100000);
}

if ($i >= 0) {
 echo "cannot terminate Stagsi", PHP_EOL;
 exit;
}

$db = new PDO("sqlite:Stagsi.sqlite");
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$setStmt = $db->prepare("UPDATE Objects SET Hash = ? WHERE rowid =
?");

foreach ($selection->Objects as $obj) {
 $id = (int) $obj->RowId;

 if (is_file($obj->FilePath)) {
 $setStmt->bindValue(1, $hash = md5_file($obj->FilePath));
 $setStmt->bindValue(2, $id);
 $setStmt->execute();
 }
}

system('start "Stagsi" '.escapeshellarg(getenv('stagsi')));

Tools/Selection rehash.php • Skip this example (#exLZ) • Browse on GitHub

Stagsi Cookbook / Command-Line (69/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Tools%252FSelection+rehash.php

Move all numbered folders except the ones with the files you want to “re-something”.
Run Stagsi.exe /re-something. Because most commands ignore broken objects (with no
data files), it will essentially process only objects in those numbered folders you’ve left (e.g. with
RowId’s 1000-1999).
Once it’s finished, move the numbered folders back into the database’s folder.

Settings
Not all Stagsi settings are accessible via the GUI. You can change everything it has via the
Settings.json file using a text editor like Windows Notepad (while the program is not running).

The following settings exist:

Name Default Meaning Effect Change
implications

BackgroundChecksBackgroundChecks True

If enabled, recently
viewed objects are
added to a queue.
When Stagsi is
idling, it calculates
hashes for objects
in this queue and
compares to the
Hash field in the
database,
adding/removing
the Corrupted
system tag
accordingly.

If disabled, browsing
might be more
performant on very low-
end hardware (even
though it’s designed to
be non-intrusive and
working even over USB)
but you won’t be
notified of data
corruptions unless you
trigger the check
manually (/check).

None.

CacheImagesInMemoryCacheImagesInMemory True

Preloads
thumbnails you
are likely to see in
advance from disk.

If enabled, the disk
experiences higher
activity but scrolling is
smoother.

None.

FolderSizeFolderSize 1000

An approximate
number of files
per each folder.
The real maximum
is about 4 times
that, if every single
object has a
standard, user and
crop thumbnails.

If made too small or too
large, everything may be
slowed down.

Will fail to
locate already
imported
objects and
their
thumbnails
until they are
manually
moved around
to respective
folders (there
is no built-in
command for
that).

Stagsi Cookbook / Settings (70/94) 2/11/2024 (5c5cf14)

FreeSpaceThresholdFreeSpaceThreshold
100
MiB

Affects import and
other operations
that may write a
large number of
data to disk.

Stagsi makes a guess at
the beginning of such
operation and bails out if
the remaining space of
the disk where the
database is located is
less than this value. If set
to 0, no such check
happens but import may
fail in the middle with
your system running
completely out of space.

None.

ImportUnknownFormatsImportUnknownFormats True

Allows importing
every type of file,
including files for
which Stagsi
cannot generate
thumbnails
automatically.

If enabled, files of
“unknown” formats still
work but you’ll see
placeholder images
instead of actual
thumbnails, unless you
add one manually.

None.

LargeFileThresholdLargeFileThreshold 10 MiB

Used in two
operations: during
import in Auto
mode (files below
this value are
copied, others –
linked to) and
hash calculation
(only last – note:
last! – this many
bytes of a file are
hashed).

Affects import in the
explained way.

May render
already
imported
objects’ hashes
invalid,
mistakenly
marking them
with
Corrupted.
This can be
fixed by
running
/rehash

(assuming no
object has a
truly corrupted
data).

MaxImageCacheSizeMaxImageCacheSize 1.5 GiB

An approximate
maximum amount
of RAM that Stagsi
may use per
process. Note that
Stagsi is a Net
program and this
limit isn’t
guaranteed to be
very accurate.

Low value may worsen
the performance. Overly
high value may cause
your system to be
unstable due to lack of
memory.

None.

Stagsi Cookbook / Settings (71/94) 2/11/2024 (5c5cf14)

MaxThumbWidthMaxThumbWidth
1000
pixels

When Stagsi
generates a
thumbnail (the t
file prefix) and it’s
above this
dimensions, it’s
scaled down.

Directly linked to your
zoom level. If your
thumbnails are larger
than this value, they will
look blurry. But making
this setting very large
will cause high memory
usage and poor
performance. Should be
set to the maximum (or
slightly less) thumbnail
dimension that you
expect to ever use
during browsing.

Will be in
effect for
newly
imported
objects or after
/rethumb.

NoThumbThresholdNoThumbThreshold

20 MiB
(200
MiB
prior to
1802)

Max file size for
known formats for
which thumbnails
are generated and
metadata¹ is
extracted.

Files larger than this will
get no automatic
thumbnail and tags¹.
Setting it too high may
cause out of memory
errors during import.

¹ Since Stagsi version
1802, this only affects
metadata detection.
Thumbnails are now
generated for files of any
size.

None.

ScaleStepScaleStep 1.5

The factor by
which thumbnail
size changes when
using the buttons
and hotkeys in the
browser.

Low value – more
gradual zooming,
requiring more clicks to
get to a higher/lower
zoom level.

None.

ThumbFormatThumbFormat JPG

One of png or
jpg. Specifies the
format for
standard, user and
cropped
thumbnails.

PNG is best for sharp
images and pixel art but
has larger file size
(leading to higher
memory usage and
potentially lower
performance). JPEG is
best for photos but
produces blurry images
for low-resolution
images like pixel art.

No thumbnails
will be visible
for already
imported
objects until
/rethumb is
called.

Stagsi Cookbook / Settings (72/94) 2/11/2024 (5c5cf14)

ThumbQualityThumbQuality 80

Only if
ThumbFormat is
jpg. Sets image
quality in % where
100 (%) is the best
possible quality –
marginally better
than 95 or even
90 but much
larger in size.

Low value – low picture
quality, small thumbnail
files (less memory
usage, better
performance).

Existing
thumbnails
will use old
quality until
/rethumb is
called.

LanguageLanguage

User interface
language as a
two-letter code
(e.g. ru for
Russian). Empty
value uses the
user’s display
language. If the
requested
localization is
unavailable –
English is used.

Affects most displayed
texts. The cookbook may
not be available in all
supported languages.

Some texts are
used during
database
initialization
only (e.g.
system tag
names) and do
not change
with this
setting.

License Key

Stagsi may operate in two basic modes: limited (freeware) and unlimited (licensed). Effective license key
is read from two locations, in this order:

%APPDATA%\Soletude\Stagsi\Stagsi.lic – suitable for default installations (each PC
user having his own license regardless of Stagsi installation folder).
Stagsi.lic in the folder of Stagsi.exe – suitable for portable installations (applied to all PC
users running Stagsi from the same folder).

These are the only locations where license info is stored. To activate a license put a key file there and
restart Stagsi (if it was running); there is no online activation or other requirements. If no valid key files
exist then the Free edition is made effective.

License key is a data packet signed by one of the Soletude’s RSA keys, public parts of which you can
obtain from here: go.soletude.ca/stagsi/license/rsa (they are also hardcoded into Stagsi). To decode:

Ensure the first byte is 0x41 (ASCII letter A).
Discard it and decode the rest using base64.
First 256 bytes are the signature of the following (257-…) bytes.
Bytes from 257 onward constitute a compressed GZ/DEFLATE stream (can be read with .Net’s
DeflateStream or PHP’s gzinflate() but not *nix’ gunzip).
Separate the uncompressed data by NULL bytes (0x00) and further separate each part into
key/value pairs (keys end with an ASCII space, 0x20).

Stagsi Cookbook / Settings (73/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/license/rsa

These keys are known:

E – license type symbol, such as P for “Professional”.
N – name of the licensee.
I – some informational text displayed in the UI.
D – a pair of space-separated dates telling the earliest and the latest Stagsi versions for which this
license key works. Current Stagsi’s release date is displayed in the About box.
M – machine identifier, for licenses bound to a particular hardware (not user).

Other Tips
Stagsi creates missing database files automatically. This means that to create a new database you
simply need to create a new folder and open it in Stagsi.
Zoom level (thumbnail size) is a global setting, not per-tab – unlike sort mode and others. This is
because it’s directly related to thumbnail cache (which is also global and only one per Stagsi
process); allowing different zoom levels per tab would cause the memory usage to skyrocket
(different cache per each different zoom level). However, you can open multiple Stagsi processes
on the same database (even though all but one have to be in read-only mode).

Exporting to Spreadsheet

Stagsi can be used as an intermediate tagging/management utility – it takes some data, you tag it, then
give results to some other tool. Luckily, open formats make it very easy both to feed and to pull the
data.

Here is a single SQL query that produces a table of 1 row per object, with the information like its title,
hash and list of tags (only titles, no parents):

SELECT o.Title, o.Hash, o.FileSize, o.Format,
 GROUP_CONCAT(t.Title, '"')
 FROM Objects o
 JOIN ObjectTags ot
 ON ot.ObjectRowId = o.RowId
 JOIN Tags t
 ON t.RowId = ot.TagRowId
 GROUP BY o.RowId

By using it with sqlite3 you can create a file that can be opened in any program understanding CSV
(“comma-separated values”) format – note the triple " which is cmd.exe’s way to escape the quotes:

For MS Excel you have to use ; instead of , as the separator:

sqlite3.exe -csv Stagsi.sqlite "SELECT o.Title, o.Hash, o.FileSize,
o.Format, GROUP_CONCAT(t.Title, '"""') FROM Objects o JOIN
ObjectTags ot ON ot.ObjectRowId = o.RowId JOIN Tags t ON t.RowId =
ot.TagRowId GROUP BY o.RowId"

Export/Spreadsheet.bat • Skip this example (#exDT) • Browse on GitHub • Adjustments (1)

Stagsi Cookbook / Other Tips (74/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Export%252FSpreadsheet.bat

We are using quotes (") to separate tag names because quotes is the only symbol not valid in a tag title
and it cannot be escaped.

Exporting with Keywords

Unlike other popular tools like Adobe Bridge and Apple iTunes, Stagsi does not store the meta-data
within the file (image or other) itself. This means if you open the file outside of Stagsi (or copy it by
means of the Export, Ctrl+S command) you don’t see any of your tags.

There are many reasons against modifying files in-place, one being that Stagsi’s tag hierarchy is
complex and it’s unclear how to fit it into plain-text keyword fields that not even some formats have
(e.g. ID3 audio tags don’t) – or that they properly support Unicode symbols (most of meta-data formats
are ancient).

However, in some cases you wish to export images with a simplified tag layout and/or fill other meta-
data properties. Here’s a PHP script that is using built-in iptcembed() function to add keywords ands
authorship (identified by children of a specific tag) to JPEG images (only JPEG) that will show up in
Windows Explorer’s file properties:

sqlite3.exe -csv -separator ";" Stagsi.sqlite "SELECT o.Title,
o.Hash, o.FileSize, o.Format, GROUP_CONCAT(t.Title, '"""') FROM
Objects o JOIN ObjectTags ot ON ot.ObjectRowId = o.RowId JOIN Tags t
ON t.RowId = ot.TagRowId GROUP BY o.RowId"

Export/Excel.bat • Skip this example (#exQA) • Browse on GitHub • Adjustments (2)

<?php
$outputPath = "Desktop\\Exported-with-keywords";
$stagsiDataPath = "Database\\";
$db = new PDO("sqlite:$stagsiDataPath/Stagsi.sqlite");
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$getTags = $db->prepare("
 SELECT Title
 FROM ObjectTags ot
 JOIN Tags t
 ON ot.TagRowId = t.RowId
 WHERE ot.ObjectRowId = ?
");

$stmt = $db->prepare("SELECT RowId FROM Tags WHERE Title =
'Author'");
$stmt->execute();
list($authorParentId) = $stmt->fetch();

$stmt = $db->prepare("SELECT RowId FROM Objects WHERE Format =
'jpg'");
$stmt->execute();

while ($row = $stmt->fetch()) {
 list($rowid) = $row;

 $getTags->bindValue(1, $rowid);
 $getTags->execute();

 $base = "$stagsiDataPath/".floor($rowid / 1000)."/$rowid";
 $file = is_file($base) ? file_get_contents($base) : "$base.jpg";

Export/With keywords.php • Skip this example (#exMS) • Browse on GitHub • Adjustments (3)

Stagsi Cookbook / Other Tips (75/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Export%252FExcel.bat
https://go.soletude.ca/stagsi/ex-code/Export%252FWith+keywords.php

EXIF specification: www.exif.org/Exif2-2.PDF.

IPTC specification with XMP node names: iptc.org/std/IIM/4.1/specifi….

Distributed (Shared) Database

There are several ways to allow multiple people (computers) to work with the same Stagsi database.
However, in all cases only 1 user must be modifying the database at the same time, otherwise changes
of other users will be lost.

Windows network share. Very easy to use (built into Windows) but also easy to break. High-speed
connection required (LAN or enterprise VPN).
Web version. Very easy to access (using any desktop or mobile web browser) and only you
(author) can modify the database.
Version control system – primarily git. Requires some basic knowledge but is very reliable,
distributed, doubles as a backup solution (can revert to any point in time and/or compare
changes).

The Tools menu can help with the VCS approach – create a simple .bat file and place it within the
Tools directory in the database folder to get a new menu item which will commit and push (publish)
your changes in two clicks (if you don’t want to enter the message every time, add -m
YOUR_MESSAGE after git commit):

Database Compartments

Generally, a single database wins over multiple small databases: it has a unified tag tree, ability to
search among everything on one page, etc. However, extremely big databases (100,000s of objects) or
portable databases (or BYOD systems) will often combine files in linked mode from multiple sources
(e.g. USB HDDs or network shares), some of which may not be available all the time (e.g. only at home

 $output = "$outputPath/$rowid.jpg";
 copy($file, $output);

 $iptc = '';

 while ($tag = $getTags->fetch()) {
 list($title, $parent) = $tag;
 // 0x02 is record ID, 0x50 and 0x19 are dataset IDs (a byline, a
keyword).
 $prefix = $authorParentId == $parent ? '1C0250' : '1C0219';
 $iptc .= pack('H*n', $prefix, strlen($title)).$title;
 }

 file_put_contents($output, iptcembed($iptc, $output));
}

git add -A
git commit
git push
rem or:
git push -m YOUR_MESSAGE

Tools/Git add, commit and push.bat • Skip this example (#exUV) • Browse on GitHub • Adjustments (1)

Stagsi Cookbook / Other Tips (76/94) 2/11/2024 (5c5cf14)

https://www.exif.org/Exif2-2.PDF
https://iptc.org/std/IIM/4.1/specification/IPTC-IIM-Schema4XMP-1.0-spec_1.pdf
https://go.soletude.ca/stagsi/ex-code/Tools%252FGit+add%252C+commit+and+push.bat

or at work).

Stagsi doesn’t mind missing files but two problems arise:

If you have background integrity checks enabled (as they are by default and you are encouraged
to leave them so), missing files may be marked Corrupted when they appear in your search
results. This might be annoying.
Files from unavailable sources appear in the Object Browser even though you know that such files
are expected to be missing in your current environment and you’d rather have them hidden by
default.

The /pick command may be used to address both issues:

Come up with a list of “compartments” (possible environments) and a criteria to filter sources
available in each of them. For example, if you have an MP3 collection at home then your “work
PC” environment must exclude all MP3 objects, i.e. -MP3 query. Or the other way around: if your
work environment only has PDFs and DOCs then the query is PDF | DOC.
Create a Windows shortcut for each compartment (environment): Stagsi.exe /pick
/force "YOUR ENVIRONMENT QUERY". For example: Work.lnk launching Stagsi.exe
/pick /force "PDF | DOC".

As a result, Stagsi will ensure that all results no matter the user’s search query match the /force’d one
and consequentally mismatching (= unavailable) files will never be queued for integrity checks (which
happens only when an object is displayed) and marked Corrupted.

Shared Per-User Database

Suppose you have a single large database and multiple users which need to work with it, each in their
own context (search tabs, window positions, etc.). For example, a PC is used by several people and you
want them to use the same underlying database files (like Stagsi.sqlite) while keeping their
contexts (JSON files) per-user (in %APPDATA%).

Stagsi doesn’t allow splitting the database natively but NTFS symlinks and directory junctions can help
you. First, move the database into a shared folder, e.g. to C:\Stagsi. Ensure Bootstrap.json
points to some per-user location (e.g. to %APPDATA%\Stagsi as it does by default in non-portable
versions). Then, in every per-user folder create symlinks and junctions so that:

%APPDATA%\...\Stagsi.sqlite ===points to===> C:\Stagsi\Stagsi.sqlite
%APPDATA%\...\Settings.json ===points to===> C:\Stagsi\Settings.json
%APPDATA%\...\0 ===points to===> C:\Stagsi\0
%APPDATA%\...\1 ===points to===> C:\Stagsi\1
...

Files which remain not symlinked (such as Windows.json) will be created in the per-user location,
not in the shared folder. When Stagsi opens such a database (not by the shared path –
C:\Stags\Stagsi.sqlite – but by a per-user location) it will read linked files and folders
(Stagsi.sqlite, etc.) from C:\Stagsi and read all other files from the per-user location (in
%APPDATA%).

You can disallow users to modify the database by revoking their write permission on the shared

Stagsi Cookbook / Other Tips (77/94) 2/11/2024 (5c5cf14)

folder using the Security tab of Windows Explorer’s folder Properties.
Remember to create enough junctions to numbered folders in advance (0, 1, etc.) and/or increase
FolderSize if you are allowing users to import new files, else part of the database may end up
in the per-user location and will break for other users.
You can easily create symlinks using this Windows Explorer extension:
schinagl.priv.at/nt/hardlinkshellext…. Note: it also allows creating hardlinks but Stagsi overwrites
some data files so this kind of links will not work.

Attachments

Let’s imagine you have a collection of video lessons or audio podcasts. You want to tag them, and you
import them as usual. But while watching or listening to them, you might want to keep notes or create
bookmarks at different positions (see our VLC extension), and you want them to remain connected to
the original file.

One way is to import your notes into Stagsi and use tags to group notes with their video files. But this is
tedious:

You’ll need a unique tag per every lesson.
Notes are dynamic by nature, and when you change them – they are marked as “corrupted”.
You might not be interested in tagging nodes or otherwise seeing them in Stagsi but if imported,
they will pollute search results.

Attachments offer a better way to do this. They are not part of the usual Stagsi operations – integrity
checks, tagging, search, etc. They don’t have thumbnails and you cannot “import” them. They are
regular files and folders placed into special “compartments” (subfolders) that Stagsi reserves for every
object in its database.

Attachments are managed via object’s context menu in the browser. You are also free to manipulate
each “compartment” folder via Windows Explorer or other program, even while Stagsi is running.

Attachments processes are started within CommonScriptEnv which is particularly useful for scripts and
.bat files.

“Has Attachments” Tag

Stagsi doesn’t track attachments and doesn’t automatically maintain a special tag like “Custom
Thumbnail”. As a result, you can’t search based on whether an object has attachments or not. This is
because attachment directories may be (and are even encouraged to be) changed from the outside of
Stagsi, e.g. using Windows Explorer.

If you need such a tag but do not want to assign it manually, use the following PHP script:

First, create a tag that will serve as “Has Attachments” that you will use in search queries. Change
the value of $hasAttachmentsTagRowid variable to this tag’s RowId.
Also change the value of $stagsiDataPath to the path of the directory with
Stagsi.sqlite.
Call the script while Stagsi is not running each time you need to update this tag (add it to objects
with attachments and remove it from ones with none).

Stagsi Cookbook / Other Tips (78/94) 2/11/2024 (5c5cf14)

http://schinagl.priv.at/nt/hardlinkshellext/hardlinkshellext.html

If you run the script from the Tools menu, it will close Stagsi automatically.

Attached Queries

Suppose you have a bunch of videos grouped by series. For example:

Black Mirror
 Season 1
 The National Anthem
 Fifteen Million Merits
 The Entire History of You
 Season 2
 Be Right Back
 White Bear
 The Waldo Moment
 White Christmas

You have many top-level tags (“Westworld”, “Doctor Who”, etc.) and each has numerous sub-tags and
sub-sub-tags. You also have a special tag “Cover” which is assigned to exactly 1 item of the series

<?php
set_error_handler(function ($severity, $msg, $file, $line) {
 throw new ErrorException($msg, 0, $severity, $file, $line);
}, -1);

$hasAttachmentsTagRowid = 12;
$stagsiDataPath = "C:/foo/stagsi_debug/db";

$pid = escapeshellarg(getenv('PID'));
exec('taskkill /pid '.$pid);
do {
 exec('tasklist /fi "pid eq '.$pid.'" | find "INFO"', $o, $c);
 usleep(100000);
} while ($c);

$db = new PDO("sqlite:$stagsiDataPath/Stagsi.sqlite");
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$db->exec("DELETE FROM ObjectTags WHERE TagRowId =
$hasAttachmentsTagRowid");

$stmt = $db->prepare("INSERT INTO ObjectTags (ObjectRowId, TagRowId)
VALUES (?, $hasAttachmentsTagRowid)");

foreach (scandir("$stagsiDataPath/Attachments") as $group) {
 if (ltrim($group, "0..9") !== "") { continue; }

 foreach (scandir("$stagsiDataPath/Attachments/$group") as $id) {
 if (ltrim($id, "0..9") !== "") { continue; }

 if (count(scandir("$stagsiDataPath/Attachments/$group/$id")) >
2) {
 $stmt->bindValue(1, $id);
 $stmt->execute();
 }
 }
}

Tools/Update Has Attachments tag.php • Skip this example (#exRN) • Browse on GitHub • Adjustments (2)

Stagsi Cookbook / Other Tips (79/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Tools%252FUpdate+Has+Attachments+tag.php

(for example, first season’s first episode or the “best” episode of the series). When you’re looking for
something to watch, you include this “Cover” tag into the query so that the same series does not appear
multiple times in the results.

When you’ve decided on a series, you may want to “enter” into it, searching for its episodes only. This
involves:

Removing the “Cover” tag from the search query.
Adding a format tag, e.g. MP4 (in case the database has not just videos but also audio, e.g. OST,
from the same series with the same top-level tag).

If you do this by hand, it will quickly become tedious.

First, you can create an attached .bat file for every object which is part of some logical group (e.g.
same video series). It would open one or more tabs in Stagsi. Here, first line opens a tab with Black
Mirror videos while the second line opens its sound track:

"%STAGSI%" /search "Black Mirror" MP4
"%STAGSI%" /search "Black Mirror" MP3

Advantage: flexibility; you can put any command and have it called with a few keystrokes. Disadvantage:
the same script should be attached to every object and if edited must be updated everywhere (but this
can be rectified to a point with fsutil).

Second, you can use Tools if you know that all your video-related queries are constructed the same way
(e.g. “Video” tag + name of the series under the “Series” root tag, for example: Video
Series/"Black Mirror"). Name this script Selection &episodes.php and call it quickly
with Alt+T,Alt+E:

<?php
$selection =
json_decode(strstr(file_get_contents(getenv('selection')), '{'));
$seriesTagRowId = null;
$tags = [];

foreach ($selection->Tags as $tag) {
 $tags[$tag->RowId] = $tag;
 if (!$tag->ParentRowId and $tag->Title === 'Series') {
 $seriesTagRowId = $tag->RowId;
 }
}

$queries = [];

foreach ($selection->ObjectTags as $obj) {
 if ($tags[$obj->TagRowId]->ParentRowId === $seriesTagRowId) {
 $queries[$obj->TagRowId] =
 "\"{$tags[$seriesTagRowId]->Title}\"/\"{$tags[$obj->TagRowId]-
>Title}\"";
 }
}

$query = '('.join(' | ', $queries).') Video';
exec(escapeshellarg(getenv('stagsi')).' /search '.esc($query));

Tools/Selection &episodes.php • Skip this example (#exQZ) • Browse on GitHub • Adjustments (2)

Stagsi Cookbook / Other Tips (80/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Tools%252FSelection+%2526episodes.php

You can of course combine both approaches, using Tools for all but some objects requiring special
treatment via an attached script.

Icon Variants

Let’s assume you have a database of pretty icons for GUI design. Raster icons typically use the PNG
format but you may have ICOs too, and even those PNGs can be of different sizes (say 16x16 and
32x32). It makes sense to import only one particular variant into Stagsi (say 32x32 PNGs) and add
others as attachments to avoid polluting search results with icons different in dimensions only.

But what if you got thousands of icons? For example, the free FatCow iconset (an excellent one, by the
way – www.fatcow.com/free-icons) has almost 4000 icons, in 11 color variations, that’s not including
ICOs. Attaching them all by hand would be insane.

Here’s a helper script to do that for FatCow. It will work for other cases as long as the variations are
placed into a single folder (e.g. FatCow_Icons16x16 for 16x16 PNG,
FatCow_Icons16x16_Color\Blue for same images but in a blue theme, etc.). Feel free to adapt it
to your needs:

// escapeshellarg() simply drops "s.
function esc($s) {
 return '"'.preg_replace('/"/u', '"""', $s).'"';
}

<?php
set_error_handler(function ($severity, $msg, $file, $line) {
 throw new ErrorException($msg, 0, $severity, $file, $line);
}, -1);

$attPath = 'C:/Stagsi DB/Attachments';

$db = new PDO("sqlite:$attPath/../Stagsi.sqlite");
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$getStmt = $db->prepare("SELECT RowId FROM Objects WHERE Hash = ?");

$walk = function ($path, $basename) use ($getStmt, $db, $attPath) {
 foreach (scandir($path) as $icon) {
 if (is_file("$path/$icon")) {
 $orig = "F:/Icons/FatCow/FatCow_Icons32x32/$icon";

 $getStmt->bindValue(1, md5_file($orig));
 $getStmt->execute();
 $id = $getStmt->fetchObject()->RowId;
 $getStmt->closeCursor();

 $atts = "$attPath/".floor($id / 1000)."/$id";
 is_dir($atts) or mkdir($atts, 0755, true);
 copy("$path/$icon", "$atts/$basename.png");
 }
 }
};

// This script assumes that Stagsi database has 32x32 PNGs imported
and you

Database/Attachments.php • Skip this example (#exRB) • Browse on GitHub • Adjustments (5)

Stagsi Cookbook / Other Tips (81/94) 2/11/2024 (5c5cf14)

http://www.fatcow.com/free-icons
https://go.soletude.ca/stagsi/ex-code/Database%252FAttachments.php

Web Database Viewer

Below is a PHP database browser. It’s extremely simplistic but can serve as a basis for a full-scale
implementation (but note that Stagsi already includes an easy sharing function with a similar online
browser).

Pertinent features and cautions about the below code:

Thumbnails are proxied through the script, to allow the database to reside outside of the web
server’s root.
Only Latin symbols are properly supported in search queries. This is due to case folding
performed and lack of Unicode “string-to-lower-case” function in SQLite.
Search query is parsed using our public domain parser. This is the only dependency of this script
(besides PDO with SQLite driver, of course) and it can even be removed.
Object filtering (search query) is very basic and not optimal. It doesn’t handle recursive terms
(~tag), doesn’t use the full title path (parent/tag), doesn’t care for unique/duplicate titles
(only uses last path title given by the user) and matches tags by titles, not IDs in SQL.
Additionally, because it’s just a single query with JOIN’s and a WHERE, when tag filter is in
effect – returned list of tags will never have tags not mentioned in the query. All objects will have
“tag list” of just one “foo” when searching for “foo” tag.

With this, the code:

// want to add (attach) 16x16, gray 16x16 and gray 32x32 as
variants.

$walk("F:/Icons/FatCow/FatCow_Icons16x16", '16x16');
$walk("F:/Icons/FatCow/FatCow_Icons16x16_Grey", 'Disabled 16x16');
$walk("F:/Icons/FatCow/FatCow_Icons32x32_Grey", 'Disabled 32x32');

<?php
$stagsiDataPath = 'C:/Stagsi Demo/db';

function nodeToWHERE(Stags\Query\Node $node, PDO $db) {
 if ($node instanceof Stags\Query\ListNode) {
 $res = [];
 foreach ($node->children as $child) {
 $res[] = '('.nodeToWHERE($child, $db).')';
 }
 return join($node->isAnd ? ' AND ' : ' OR ', $res);
 } else if ($node instanceof Stags\Query\IdNode) {
 return 'o.RowId '.($node->isNegative ? '<>' : '=').' '.((int)
$node->id);
 } else if ($node instanceof Stags\Query\TagNode) {
 if ($node->isRecursive) {
 throw new Exception("Recursive (~) tag search is not
supported.");
 }
 return 'LOWER(t.Title) '.
 ($node->isNegative ? '<>' : '=').' '.
 strtolower($db->quote(end($node->path)));
 } else {
 throw new Exception("Unknown query node type.");

Misc/Web viewer.php • Skip this example (#exGJ) • Browse on GitHub • Adjustments (3)

Stagsi Cookbook / Other Tips (82/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Misc%252FWeb+viewer.php

 }
}

set_error_handler(function ($severity, $msg, $file, $line) {
 throw new \ErrorException($msg, 0, $severity, $file, $line);
}, -1);

extract($_REQUEST + [
 'query' => '',
 'sort' => 'rowid',
 'desc' => true,
 'view' => 'thumbs',
 'thumb' => '',
 'page' => 1,
], EXTR_PREFIX_ALL, 'r');

if ($r_thumb = (int) $r_thumb) {
 chdir($stagsiDataPath);
 $path = floor($r_thumb / 1000)."/[cut]$r_thumb.*";
 $files = glob($path);
 $files = array_combine(array_map(function ($f) { return
basename($f)[0]; }, $files), $files);
 $files += ['c' => '', 'u' => '', 't' => ''];
 $file = $files['c'] ?: ($files['u'] ?: $files['t']);
 $info = getimagesize($file);
 header("Content-Type: $info[mime]");
 readfile($file);
 exit;
}

$db = new PDO("sqlite:$stagsiDataPath/db.sqlite");
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// Obtain from https://github.com/Soletude/Stags-Query-Parser
require_once 'Stags-Query-Parser/Stags.Query.php';
$where = nodeToWHERE((new Stags\Query\Parser($r_query))->parse(),
$db) ?: '1';

ltrim($r_sort, 'a..z') === '' or $r_sort = 'rowid';
$sort = "o.$r_sort";
$desc = $r_desc ? 'DESC' : 'ASC';

$sql = <<<SQL
SELECT o.RowId, o.Title, GROUP_CONCAT(t.Title, '"') TagTitles
 FROM Object o
 JOIN dataobjecttags ot
 ON ot.dataobject_rowid = o.RowId
 JOIN Tags t
 ON t.RowId = ot.tag_rowid
 WHERE $where
 GROUP BY o.RowId
 ORDER BY $sort $desc
 LIMIT :start, :count
SQL;

$stmt = $db->prepare($sql);
$stmt->bindValue('start', ($r_page - 1) * 100);
$stmt->bindValue('count', 100);
$stmt->execute();

$qs = '?'.$_SERVER['QUERY_STRING'].'&';
?>

<!DOCTYPE html>
<html>

Stagsi Cookbook / Other Tips (83/94) 2/11/2024 (5c5cf14)

 <head>
 <title>Simple Stagsi Web Viewer</title>
 <style>
 .group { margin-right: 1em; }
 .results.thumbs img { height: 100px; }
 .results.list { text-align: center; }
 </style>
 </head>
 <body>
 <h1><?=htmlspecialchars($stagsiDataPath)?></h1>

 <form action="">
 <label class="group">
 Search query:
 <input value="<?=htmlspecialchars($r_query)?>" name="query">
 </label>

 Sort by:
 <select name="sort">
 <option value="rowid" <?=$r_sort == 'rowid' ? 'selected' :
''?>>Object ID</option>
 <option value="random" <?=$r_sort == 'random' ? 'selected'
: ''?>>Random</option>
 <option value="title" <?=$r_sort == 'title' ? 'selected' :
''?>>Title</option>
 <option value="filesize" <?=$r_sort == 'filesize' ?
'selected' : ''?>>File size</option>
 <option value="format" <?=$r_sort == 'format' ? 'selected'
: ''?>>Format</option>
 </select>

 <label>
 <input type="hidden" name="desc" value="0">
 <input type="checkbox" name="desc" value="1" <?=$r_desc ?
'checked' : ''?>>
 Descending
 </label>

 View as:
 <label>
 <input type="radio" name="view" value="thumbs" <?=$r_view
=== 'thumbs' ? 'checked' : ''?>>
 Thumbnails
 </label>
 <label>
 <input type="radio" name="view" value="list" <?=$r_view
=== 'list' ? 'checked' : ''?>>
 List
 </label>

 <button type="submit">Apply</button>
 </form>

 <p>
 <a href="<?=htmlspecialchars("$qs&page=".($r_page + 1))?
>">Next page
 |
 <?php if ($r_page > 1) {?>
 <a href="<?=htmlspecialchars("$qs&page=".($r_page - 1))?
>">Previous page
 <?php }?>

Stagsi Cookbook / Other Tips (84/94) 2/11/2024 (5c5cf14)

Performance Tips

One of the main (and only) challenges in Stagsi is thumbnail loading. If you are browsing through a list
of 1000 objects and every object’s thumbnail is 100 KiB (a modest estimate) – then Stagsi needs to load
about 1000×100 KiB = 100 MiB of data really fast – and then to render it.

For traditional HDDs (spinning hard-disk drives) 100-150 MiB per second is the total limit they may
provide in ideal conditions (only 1 process is using the drive, the file system is not fragmented, all files
are near each other “physically”).

Modern SSDs and especially NVMe’s are inexplicably better at the kind of tasks Stagsi needs but may
still fall short in some circumstances (large thumbnail files, multiple processes accessing the disk
simultaneously, real-time antivirus filters, low-end hardware, etc.).

Therefore it’s recommended to all users to consider the following factors contributing to smooth Stagsi
browsing, in order of importance:

Free RAM and the CacheImagesInMemory and MaxImageCacheSize settings. Stagsi loads
thumbnails into memory from disk in advance, caching all of them for small databases or
regenerating the cache each time you switch tabs for large ones. The more Gigabytes you can give
to Stagsi, the better. This is the biggest performance factor.
Be always-on: if you’re using Stagsi often, do not exit it but minimize to tray (this is enabled by
default) so that its cache is not invalidated by a “cold” start. The same approach is used by
Windows Explorer (obviously), Microsoft Office and Google Chrome.
Good hardware, in particular – disk, especially for databases that cannot fit into RAM (either

 |
 Reset all
 </p>

 <div class="results <?=htmlspecialchars($r_view)?>">
 <?php while ($row = $stmt->fetchObject()) {?>
 <?php if ($r_view === 'list') {?>
 <hr>
 <a href="<?=htmlspecialchars("?thumb=$row->RowId")?>">
 <img src="<?=htmlspecialchars("?thumb=$row->RowId")?>">

 <p><?=htmlspecialchars($row->Title)?></p>
 <p>
 <?php foreach (explode('"', $row->TagTitles) as $tag) {?
>
 [<a href="<?=htmlspecialchars("$qs&query=\"$tag\"")?
>">
 <?=htmlspecialchars($tag)?>]
 <?php }?>
 </p>
 <?php } else {?>
 <a href="<?=htmlspecialchars("?thumb=$row->RowId")?>">
 <img src="<?=htmlspecialchars("?thumb=$row->RowId")?>"
 title="<?=htmlspecialchars($row->Title)?>">

 <?php }?>
 <?php }?>
 </div>
 </body>
</html>

Stagsi Cookbook / Other Tips (85/94) 2/11/2024 (5c5cf14)

because they’re very big or because the amount of RAM is small). Even though Stagsi has been
successfully used over USB, good hardware will make the experience significantly better.

As a somewhat reverse advice, if you have a very fast disk (NVMe) and a large database (a lot of
large images that cannot fit in memory at once) or you have to constantly close Stagsi process
then you may actually benefit from disabling thumbnail cache (CacheImagesInMemory) to
remove unnecessary burden from your disk and CPU while still maintaining an adequate
performance.

When changing multiple tags at once of a large selection (thousands of objects) use the modal
Tag Selection (Space) dialog rather than Object Tags (Ctrl+G). This is because the modal
dialog applies changes to all tags at once in one operation, not one operation per each tag as via
Object Tags.
Optimize the thumbnails with MaxThumbWidth, ThumbFormat and ThumbQuality settings.
If you don’t zoom out too much, lower MaxThumbWidth. If you want best quality, don’t set
ThumbQuality to 100 but see if 90 works as good, or consider switching to PNG format. All of
this will result in smaller thumbnail file sizes, faster loading and better performance (as explained
above).
Manually tailor the thumbnails to your use. Standard settings are limited and suitable for
configuration-free, general-purpose databases. However, if you have many pixel art images, you
can use a tool like XnView to generate indexed PNG images with short palettes, dramatically
reducing their file size, speeding up the performance without compromising image quality.

Portable Builds

Stagsi doesn’t have to be installed on the target system. Moreover, it can be configured to avoid writing
to any locations outside of its directory.

Note: by default Stagsi is coming with a tiny automatic update program which does write to the registry
and keeps logs and partially downloaded updates in the current user’s directory (%APPDATA%). If you
want to avoid that, rename Sup.exe (so you can update Stagsi manually by running the renamed file)
or delete it (and update by extracting new portable version’s archive from the website).

Aspect Explanation Portable
considerations

Registry
If the user has accepted the license agreement on the start-up then
the EulaAccepted key is created under
HKCU\Software\Soletude\Stagsi.

Due to legal
requirements, this
key cannot be
disabled.

Logs
When Stagsi is launched, it starts writing logs even before database
settings are read. The logs go to Stagsi’s folder Logs subfolder, or to
%APPDATA%\Soletude\Stagsi\Logs if the former is not
writeable (as is the case when it’s installed in Program Files).

Ensure Stagsi can
write to its Logs
subfolder.

Database

The location of the database is specified in DataPath key of
Bootstrap.json’s in the Stagsi’s folder. By default and when it’s
missing or bad, %APPDATA% is used. The value is relative to Stagsi’s
folder.

Set DataPath key
of
Bootstrap.json

to Database (a
subfolder of Stagsi).

Stagsi Cookbook / Other Tips (86/94) 2/11/2024 (5c5cf14)

Write
access

On launch, Stagsi tests if the database file is writeable and
automatically enables /ro (read-only) mode if it isn’t.

Stagsi won’t break if
placed in a read-only
location.

Using an External (USB) Drive

Stagsi cares little for where its data files are located. For portability purposes, the database can be
placed on an external USB drive, possibly even with Stagsi binaries to avoid installing the program on
the target system (see the Portable Builds section for details).

Common questions about using an external drive for Stagsi:

Drive lifespan/wearing. Stagsi does not produce any overly heavy activity to
significantly affect the drive’s lifespan, be it an HDD or SSD. It does read a lot of data (depending
on your database’s size, perhaps around the same as watching a few high-quality movies) but
drive wearing is normally measured in the amount of data written, and Stagsi only writes it
intensively during import, which is about the same as copying all imported files onto the hard
drive in Windows Explorer.
Stagsi becoming unresponsive after an idle period. For better power
management and damage protection, HDDs may “spin down” when they have not been used for a
while (normally – about 10 minutes). This happens for internal HDDs as well. If after leaving
Stagsi’s window open for a while you notice it’s not responding for several seconds when
switching back to it – it’s most likely due to the drive “warming up”. You might even hear a
characteristic sound coming out from your HDD enclosure. This is perfectly normal but might be
annoying. Most manufacturers provide a tool for changing the idle period or disabling it
completely – for example, WD Drive Utilities by Western Digital.
Sluggish scrolling, etc. Stagsi needs as fast disk access as possible. External HDDs
often have very poor performance, which may or may not your usage (depending on the database
size, thumbnail size, amount of RAM for file caching, etc.). To improve the situation, consider an
external SSDs with USB 3 support, or an internal drive (even if HDD). See also Performance Tips.

Version Numbers

Internally, Stagsi is an interface (hence the “-i”) to Stags (“Soletude’s Tagging System”) which is
internally called “the library” (and Stagsi called “the host program”). Both parts have separate versions
exposed in Windows file properties (Soletude.Stags.Library.dll and Stagsi.exe) and in
the database’s Stags table (shown in the Database panel in the UI).

LibraryVersion indicates the version of the database schema and is used in the migration process.
It consists of two numbers: major and minor. DLL properties also include build number but it is ignored
for the purpose of determining if two schema versions are the same. This version does not appear
outside of the database field and DLL properties.

HostVersion indicates the program’s “overall” version as major.minor.build number, used in
different places, e.g. in the Copy command’s JSON. Given two host versions, if their build numbers are
different but other components are the same then it’s essentially the “same” Stagsi version, else the
version having a larger build number is more recent (thus nothing needs to be calculate based on
major and minor numbers, they only need to be compared as is). HostVersion in the database is
purely informational.

Stagsi Cookbook / Other Tips (87/94) 2/11/2024 (5c5cf14)

Loosely following semver.org, major is incremented whenever a significant change occurs, possibly
breaking old scripts, plugins, etc.; minor is incremented routinely for each new release; build number is
used for internal accounting purposes.

Alternative Software

Stagsi is not the only solution in the field of data management but we believe the competition has
critical flaws and so we’re not afraid of talking about it. If you’re not happy with Stagsi – get in touch
with us go.soletude.ca/stagsi/forum. If you know another alternative – let us know and we will evaluate
it.

Adobe Bridge – the industry standard among artists. It’s huge (installer is around 1 GiB), can only
manage some images (PNG and JPEG but not GIF) and videos, alters file data to store tag
information (consequently, has no separate database and cannot detect duplicates), offers no
search query language. Advantages: cross-platform, supports videos and is free. With all the
limitations, Bridge was the number one prototype we had in mind when designing Stagsi.
Apple iTunes – another industry standard, this time among audiophiles. It’s reasonably large
(installer is around 250 MiB), heavily wired into the Apple’s ecosystem, only supports audio files,
alters file data. Advantages: great usability (even though it looks alienate on Windows), cross-
platform, free.
Tabbles tabbles.net – a worthy product similar to Stagsi in many aspects but costs ~$20-$79 per
year (as of October 2019), heavier (over 100 MiB if you include the dependencies – a local SQL
Express Server), with a very limited free version (comparing to Stagsi). Advantages: an old project,
online collaboration, supports any kind of files, separate meta-data storage (at last!), automatic
tagging (but less powerful than Stagsi’s wildcard, regexp and JSON-based rules), integration with
Windows Explorer and web browsers, somewhat hackable.
Tag Spaces www.tagspaces.org – an open-source commercial product (from $44 per year of
updates as of October 2019). Stores tag information in file names (!), hardly works with more
than a dozen of tags (no tag tree, hotkeys, sluggish UI), tries to mimic a file browser, extensions
require an Enterprise license. Advantages: cross-platform, open-source, integration with web
browsers, portable.
Windows Live Photo Gallery – was part of Windows since Vista but was dropped in 2017.
Advantages: blended nicely with Windows Explorer, was fast and easy to use, had batch tagging
features and some useful photo tools.

Database From Scratch
A database can be entirely auto-generated, without relying on Stagsi GUI or executables at all. This has
many uses – one is data “scraping”, i.e. taking of data from an arbitrary resource in an arbitrary format
and presenting it uniformly using Stagsi.

Freelancer.com

Most websites present their information differently even though the underlying data may have the
same structure and then fail at providing adequate means to work with it.

Freelancer.com is a resource where you can create design contests (among other things); you get a
listing of submitted works – a plain simple grid of images with few sorting options, no filtering, fixed

Stagsi Cookbook / Database From Scratch (88/94) 2/11/2024 (5c5cf14)

https://semver.org
https://go.soletude.ca/stagsi/forum
https://tabbles.net
https://www.tagspaces.org

page size, fixed thumbnail dimensions, practically no rating capabilities. A contest may see thousands of
submissions and reviewing them (especially if you have other team members) becomes a painful
experience.

This can be solved by importing results into Stagsi – gaining sharing (git), tagging and filtering, sorting,
backing up and so on. First, open your contest’s page, sort it in some stable manner (e.g. by time
submitted), open the Console (Ctrl+Shift+I), paste this script and run it (Enter):

Once it walks to the last page, run this in the Console: a.join('\n') – it will output a list of
thumbnail URLs. Copy/paste them into a text file and feed that file to any download manager, such as
GNU Wget:

wget -iurls.txt

Finally, import the downloaded images into Stagsi as usual.

It’s safe to repeat this process multiple times because thumbnails do not change and so already
imported images are detected as duplicates (same data hash).

Unicode Table

Unicode is a standard for encoding human texts. It strives to encompass all writing system in use today,
in the past and in the future (emoji) and so the number of symbols known to this standard is huge (tens
of thousands). Each symbol is assigned a set of properties, such as “Latin plane” or “Right-to-left script”.

Below is a PHP script filling an empty database (copied from Skeleton folder) with Unicode symbols,
creating thumbnails for each of them and assigning tags according to the symbol’s properties. Things to
note:

Each object is a file with .unicode with type association set up such that opening it copies it to
the clipboard.
Many objects also have .unicode attachments – their variants, such as lower-case version (“q”)
of an upper-case symbol (“Q”).
The Objects table gains a custom column Codepoint (decimal number such as 81 for
U+0051 – “Q”) which is displayed in Stagsi’s Properties panel and can be copied with a single
click.
The Stags table gains a key Unicode holding the version of the standard on which the data is

var f = function () {
 document.querySelectorAll('#entry-cards-list figure
img.ContestCard-image')
 .forEach(img => a.push(img.getAttribute('src'))
 var pages = document.querySelectorAll('.btn.Pagination-link')
 pages[pages.length - 1].click()
 var t = setTimeout(f, 1500)
 window.onunload = () => clearTimeout(t)
}
var a = []; f()

Import/Freelancer.com grabber.js • Skip this example (#exSJ) • Browse on GitHub

Stagsi Cookbook / Database From Scratch (89/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Import%252FFreelancer.com+grabber.js

based. It’s displayed in the Database panel.

<?php
set_error_handler(function ($severity, $msg, $file, $line) {
 throw new ErrorException($msg, 0, $severity, $file, $line);
}, -1);

if (!class_exists('IntlChar')) {
 die('php_intl module is required.');
}

copy('C:/Program Files/Stagsi/Skeleton/Stagsi.sqlite',
'Stagsi.sqlite');
copy('C:/Program Files/Stagsi/Skeleton/Settings.json',
'Settings.json');
$settings = json_decode(file_get_contents('Settings.json'));
$settings->BitmapScalingMode = 'Fant';
$settings->ThumbFormat = 'png';
$perDir = $settings->FolderSize;
file_put_contents('Settings.json', json_encode($settings,
JSON_PRETTY_PRINT));

$bom = "\xEF\xBB\xBF";
$rootTagID = 1;

$assoc = [
 [
 "CallMode" => 1,
 "ExecutableList" => [
 "nircmd clipboard readfile \"%1\"",
],
 "Extension" => ".unicode"
],
];

file_put_contents('Associations.json', json_encode($assoc,
JSON_PRETTY_PRINT));

$db = new PDO('sqlite:Stagsi.sqlite');
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$selectTag = $db->prepare('SELECT RowId, * FROM Tags WHERE Title =
:title AND ParentRowId = :parent');
$selectRootTag = $db->prepare("SELECT RowId, * FROM Tags WHERE Title
= :title AND ParentRowId = $rootTagID");
$insertTag = $db->prepare("INSERT INTO Tags (Title, CreationTime,
\"Order\", ParentRowId, IconPosition) VALUES (:title,
STRFTIME('%s','NOW'), 0, :parent, 0)");
$insertObject = $db->prepare("INSERT INTO Objects (CreationTime,
Random, Hash, Title, Format, ThumbCropX, ThumbCropY, ThumbCropWidth,
ThumbCropHeight, FileSize, Codepoint) VALUES (STRFTIME('%s','NOW'),
RANDOM() % 2147483647, :hash, :title, :format, 0, 0, 0, 0, :size,
:codepoint)");
$insertObjectTag = $db->prepare('INSERT INTO ObjectTags
(DataObject_RowId, Tag_RowId) VALUES (:object, :tag)');

$ver = join('.', IntlChar::getUnicodeVersion());
$db->exec("INSERT OR REPLACE INTO Stags SET Key = 'Unicode', Value =
'$ver'");

try {
 $db->exec("ALTER TABLE Objects ADD COLUMN Codepoint INT NOT NULL

Database/Unicode.php • Skip this example (#exYD) • Browse on GitHub • Adjustments (3)

Stagsi Cookbook / Database From Scratch (90/94) 2/11/2024 (5c5cf14)

https://go.soletude.ca/stagsi/ex-code/Database%252FUnicode.php

DEFAULT 0");
} catch (PDOException $e) {
 // Already added, ignore.
}

list($formatTagID) = createTag(['Unicode File']);
$db->exec("UPDATE Tags SET System = '_unicode' WHERE RowId =
$formatTagID");

$codepoints = [];

// Generation of 0x0000..0xFFFF (55346 codepoints) takes 30 minutes.
IntlChar::enumCharNames(0x0000, 0x0FFF, function ($codepoint) use
(&$codepoints) {
 $codepoints[] = $codepoint;
});

$count = 0;

foreach ($codepoints as $codepoint) {
 if (++$count % 500 == 0) {
 printf('%s / %s (%.1f%%)...%s', $count, count($codepoints),
 $count / count($codepoints) * 100,
 PHP_EOL);
 }

 $text = IntlChar::chr($codepoint);

 $insertObject->bindValue(':hash', md5($bom.$text));
 $title = IntlChar::charName($codepoint,
IntlChar::UNICODE_CHAR_NAME);
 $insertObject->bindValue(':title', $title);
 $insertObject->bindValue(':format', 'unicode');
 $insertObject->bindValue(':size', $bom.$text);
 $insertObject->bindValue(':codepoint', $codepoint);
 $insertObject->execute();
 $objectID = $db->lastInsertId();
 $objectGroup = floor($objectID / $perDir);

 linkTagsTo($objectID, $formatTagID);

 is_dir($objectGroup) or mkdir($objectGroup);
 file_put_contents("$objectGroup/$objectID.unicode", $bom.$text);
 drawText("$objectGroup/u$objectID.png", $text);

 $age = IntlChar::charAge($codepoint);
 $age[count($age) - 1] = 'Unicode v'.join('.', $age);
 createTagFor($objectID, array_merge(['Age'], $age));

 $digit = IntlChar::charDigitValue($codepoint);
 $digit < 0 or createTagFor($objectID, ['Digit', $digit]);

 $num = IntlChar::getNumericValue($codepoint);
 $num === ((float) -123456789) or createTagFor($objectID,
['Numeric', $num]);

 $dir = IntlChar::charDirection($codepoint);
 createTagFor($objectID, ['Direction', prettyConst($dir,
'CHAR_DIRECTION_')]);

 $names = [
 'Name' => IntlChar::UNICODE_CHAR_NAME,
 'Name/Alias' => IntlChar::CHAR_NAME_ALIAS,
 'Name/Choice Count' => IntlChar::CHAR_NAME_CHOICE_COUNT,
];

Stagsi Cookbook / Database From Scratch (91/94) 2/11/2024 (5c5cf14)

 foreach ($names as $tag => $const) {
 $name = IntlChar::charName($codepoint, $const);
 if ($name) {
 createTagFor($objectID, array_merge(explode('/', $tag),
[$name]));
 }
 }

 $name = IntlChar::charName($codepoint,
IntlChar::EXTENDED_CHAR_NAME);
 if ($name !== IntlChar::charName($codepoint)) {
 createTagFor($objectID, ['Name', 'Extended', $name]);
 }

 $cat = IntlChar::charType($codepoint);
 createTagFor($objectID, ['Category', prettyConst($cat,
'CHAR_CATEGORY_')]);

 $pair = IntlChar::getBidiPairedBracket($codepoint);
 $pair === $codepoint and $pair = false;
 $lower = IntlChar::tolower($codepoint);
 $lower === $codepoint and $lower = false;
 $upper = IntlChar::toupper($codepoint);
 $upper === $codepoint and $upper = false;
 if ($pair !== false or $lower !== false or $upper !== false) {
 $apath = "Attachments/$objectID";
 is_dir($apath) or mkdir($apath, 0750, true);
 $pair === false or file_put_contents("$apath/Pair.unicode",
$bom.IntlChar::chr($pair));
 $lower === false or file_put_contents("$apath/Lower.unicode",
$bom.IntlChar::chr($lower));
 $upper === false or file_put_contents("$apath/Upper.unicode",
$bom.IntlChar::chr($upper));
 }

 $block = IntlChar::getBlockCode($codepoint);
 // E.g. block ID 279 has no constant.
 createTagFor($objectID, ['Block', prettyConst($block,
'BLOCK_CODE_') ?: "#$block"]);

 $class = IntlChar::getCombiningClass($codepoint);
 $class and createTagFor($objectID, ['Combining Class', $class]);

 $closure = IntlChar::getFC_NFKC_Closure($codepoint);
 strlen($closure) and createTagFor($objectID, ['FC NFKC Closure',
$closure]);
}

echo "Wrote $count codepoint objects.", PHP_EOL;

function createTagFor($objectID, array $path) {
 $ids = createTag($path);
 linkTagsTo($objectID, end($ids));
}

function createTag(array $path) {
 global $rootTagID, $db, $selectTag, $selectRootTag, $insertTag;
 $ids = [];

 foreach ($path as $i => $title) {
 if (!$i) {
 $selectRootTag->bindValue(':title', $title);
 $selectRootTag->execute();
 $row = $selectRootTag->fetch();

Stagsi Cookbook / Database From Scratch (92/94) 2/11/2024 (5c5cf14)

 } else {
 $selectTag->bindValue(':title', $title);
 $selectTag->bindValue(':parent', end($ids));
 $selectTag->execute();
 $row = $selectTag->fetch();
 }
 if ($row) {
 $ids[] = $row['RowId'];
 } else {
 $insertTag->bindValue(':title', $title);
 $insertTag->bindValue(':parent', end($ids) ?: $rootTagID);
 $insertTag->execute();
 $ids[] = $db->lastInsertId();
 }
 }

 return $ids;
}

function linkTagsTo($objectID, $tagIDs) {
 global $insertObjectTag;

 foreach ((array) $tagIDs as $tagID) {
 $insertObjectTag->bindValue(':object', $objectID);
 $insertObjectTag->bindValue(':tag', $tagID);
 $insertObjectTag->execute();
 }
}

function prettyConst($value, $prefix) {
 static $consts;
 if (!$consts) {
 $consts = (new ReflectionClass(IntlChar::class))-
>getConstants();
 }
 foreach ($consts as $cname => $cvalue) {
 if (!strncmp($cname, $prefix, strlen($prefix)) and $cvalue ===
$value) {
 return ucwords(strtolower(strtr(substr($cname,
strlen($prefix)), '_', ' ')));
 }
 }
}

function drawText($file, $text) {
 $im = imagecreatetruecolor($w = 128, $h = 128);
 imagesavealpha($im, true);
 // Windows Explorer would show 100% transparent pixels as fully
opaque.
 // E.g. if 127 is changed to 126, the image would appear truly
transparent.
 // But it's an Explorer's quirk - Photoshop does show proper 100%
transparency.
 imagefill($im, 0, 0, imagecolorallocatealpha($im, 255, 255, 255,
127));
 $font = 'c:/windows/fonts/ARIALUNI.TTF';
 $size = 48;
 $box = imagettfbbox($size, 0, $font, $text);
 // 64x64
 // 1:7 --- 32:7
 // | '@' |
 // 1:37 --- 32:37
 $x = round(($w - $box[2] + $box[0]) / 2);
 $y = $h - round(($h - $box[1] + $box[7]) / 2);
//if ($text==='@') {

Stagsi Cookbook / Database From Scratch (93/94) 2/11/2024 (5c5cf14)

// foreach ($box as $i => &$ref) { $i % 2 and $ref += 30; }
//var_dump($text,$box,$x,$y);
//imagerectangle($im, $box[6], $box[7], $box[2], $box[3],
imagecolorallocate($im, 255, 0, 0));
//}
 imagettftext($im, $size, 0, $x, $y, imagecolorallocate($im, 0, 0,
0), $font, $text);
 imagepng($im, $file);
}

Stagsi Cookbook / Database From Scratch (94/94) 2/11/2024 (5c5cf14)

	Stagsi Cookbook
	Data File Structure
	Welcome Page
	Skeleton
	Temp
	Numbered Directories
	Thumbnail Files
	Relative Links
	Fixing Links

	Attachments
	Common Script Environment

	Tools
	Scale and Convert Selection to PNG

	Backup Tools
	What to Backup?
	SQLite
	What is SQLite?
	SQLite Browser for Windows, Linux and Mac
	SQLite Firefox Addons
	sqlite3 Command-Line Tool
	Reading from PHP
	Comparing the NULLs

	Tags
	System Tags
	Automatic Localization

	Volume Indicator
	Weight & Relevance
	Filtering the Tree
	Tag Decks & Deck Sets
	Mass-Merging

	Search
	“Smart” Collections
	Filter by Path
	Improving Relevance
	Query Language
	Cheatsheet
	Parsing Libraries

	Custom Sorting with Weights
	Custom Sorting with Random
	Custom Sorting with C# Plugin
	Randomize as a Marker

	Thumbnails
	Editing Thumbnails
	Many Objects, Same Thumbnail
	Batch Cropping
	Permanent Cropping
	Batch Transformation
	Text Overlay with Ruby
	Supported Formats and Plugins
	Custom Thumbnails – Manual Generation
	Custom Thumbnails – Via Scripts
	Custom Thumbnails – C# Plugin

	Browser Copy
	Synthesized Paste
	Merge and Split Databases
	Confirming Changes (Diff)
	Multiple Clipboards
	AutoHotKey
	Node.js
	Notepad 2e
	Spreadsheet

	Import
	Duplicates & Hashes
	Zero-Sized Files and the Null Hash
	Fuzzy Duplicate Images Detection

	Explore Skipped
	Tags by Wildcard
	Tags by Regular Expression (RegExp)
	Tags From Custom Sources
	Multiple File Name Tags
	Repairing Corrupted
	Change Data Mode

	Surprising Uses
	Audio & Video Bookmarks
	Web Bookmark Manager
	Supplimenting Regular Folders
	Using Windows Shortcuts
	Another Way To Tag Folders

	Using Batch and Other Script Files

	Command-Line
	Read-Only
	Multi-Instance Mode
	SQL Log
	Data-Path
	/search
	/nmh
	Troubleshooting
	C Implementation

	/hash
	/import
	/pick
	Maintenance
	System Scheduler
	Partial /rehash
	Other Partial Commands

	Settings
	License Key

	Other Tips
	Exporting to Spreadsheet
	Exporting with Keywords
	Distributed (Shared) Database
	Database Compartments
	Shared Per-User Database
	Attachments
	“Has Attachments” Tag
	Attached Queries
	Icon Variants

	Web Database Viewer
	Performance Tips
	Portable Builds
	Using an External (USB) Drive
	Version Numbers
	Alternative Software

	Database From Scratch
	Freelancer.com
	Unicode Table

